Барабаны устанавливаемые в механизме подъема груза. Проверка работы механизма подъема груза крана в режиме неустановившегося движения. Компоновка механизма подъема груза

К деталям узла барабана, подлежащим расчету, относятся: барабан, ось барабана, подшипники оси, крепление конца каната к барабану.

Прочностным расчета барабана является расчет его стенки на сжатие. Для группы режима работы принимаем материал барабана сталь 35Л с [ сж ]= 137 МПа , барабан выполнен литым

Толщина стенки литого барабана

0,01 · Дн + 0,003 = 0,01 · 400 + 0,003 = 0,007 м

По условиям технологиям изготовления литых барабанов? 10 15 мм. С учетом изнашивания стенки барабана примем = 15 мм = 0,015 м

Проверяем выбранную стенку барабана на сжатие по формуле

Уточняем выбранное значение толщины стенки барабана по формуле

где - коэффициент, учитывающий влияние деформаций стенки барабана и каната, определяется по зависимости

где Ек - модуль упругости каната. Для шестипрядных канатов с органическим сердечником Ек = 88260 МПа; Fк - площадь сечения всех проволок каната; Еб - модуль упругости стенки барабана, для литых стальных барабанов Еб = 186300 МПа, по зависимости 0,0062 м при отношении длины барабана к его диаметру допускаемое напряжение в формуле (46) следует уменьшить на с% при навивке на барабан двух концов каната, причем для величина с = 5%. Тогда

[ сж ] = 0,95 · 137 = 130,15 МПа

1,07 · 0,86452 · = 0,0058 м. Следовательно, принятое значение = 0,015 м удовлетворяет условиям прочности.

При отношении = 2,05 < 3 4 расчет стенки барабана на изгиб и кручение не выполняется.

Отношение = 2,05 < = 6,5 , поэтому расчет цилиндрической стенки барабана на устойчивость также можно не выполнять.

В качестве прижимного устройства каната на барабане используется напряжение планки с полукруглыми канавками. Согласно правилам Госгортехнадзора число установленных одноболтовых планок должно быть не менее двух, которые устанавливают с шагом 60 0 . Суммарное усилие растяжение болтов, прижимающих канат к барабану.

где f = 0,1 0,12 - коэффициент трения между конатом и барабаном,

Угол наклона боковой грани канавки. = 40 0 ;

Угол обхвата каната неприкосновенными витками, = (1,5 2)· 2П = (3 4) · П

Необходимое число болтов

где k ? 1,5 - коэффициент запаса надежности крепления каната к барабану,

f 1 = - приведенный коэффициент трения между канатами и планкой;

f 1 = = 0,155; l - расстояние от дна каната на барабане до верхней плоскости прижимной планки, конструктивно примем l = 0,025 м.

В качестве материала болта принята сталь ВСтЗсп с тех = 230 МПа. Допускаемое напряжение растяжения [ р ] = = = 92 МПа; d 1 - средний диаметр резьбы болта, для каната диаметром d к = 13 мм принимаем болт М12, d 1 = 0,0105 м

Принимаем z = 8, четыре двухболтовые в планки.

Ось барабана испытывает напряжение изгиба от действия усилий двух ветвей каната при сдвоенном полиспасте, собственным весом барабана пренебрегаем. Расчетная схема оси барабана механизма подъема представлена на рисунке 8.

Нагрузка на ступицы барабана (при пренебрежении его весом)

где l н - длина нарезной части барабана, l н = 303,22 мм; l гл - длина гладкой средней части, l гл = 150 мм (см. рисунок)

Расстояние от ступиц барабана до опор оси предварительно принимаем : l 1 = 120 мм, l 2 = 200 мм, расчетную длину оси l = L б + 150 200 мм = 820 + 150 = 970 мм.

Расчет оси барабана сводится к определению диаметров цапф d ш и ступицы d с из условия работы оси на изгиб в симметричным цикле :

Где Ми - изгибающий момент в расчетном сечении,

W - момент сопротивления расчетного сечения при изгибе,

[ - 1 ] - допускаемое напряжение при симметричном цикле, определяется по упрощенной формуле:

Рисунок 8 - Расчетная схема оси барабана механизма подъема груза.

где к 0 - коэффициент учитывающий конструкцию детали, для валов и осей, цапф к 0 = 2 2,8; - 1 - предел выносливости,

[n] - допускаемый коэффициент запаса прочности, для группы режима работы 5М[n] = 1,7. Материал оси - сталь 45, тех = 598 МПа, -1 = 257 МПа

Нагрузки на ступицы барабана по формуле (50)

Находим реакции в опорах оси барабана: ? М 2 = 0

R1 · l = P1(l - l1) + P2 · l2

R 2 = P 1 + P 2 - R 1 = 14721,8 + 10050,93 - 14972,903 = 9799,827 Н

Изгибающий момент под левой ступицей:

М 1 = R 1 · l 1 = 14972,903 · 0,12 = 1796,75 Н · м

Изгибающий момент под правой ступицей:

М 2 = R 2 · l 2 = 9799,827 · 0,2 = 1959,965 Н · м

Находим диаметр оси под правой ступицей, где действуют наибольший изгибающий момент М 2:

Принимаем d С = 0,07 м

Принимаем остальные диаметры участков оси барабана согласно рисунку 9.

Рисунок 9 - Эскиз оси барабана.

Из в качестве подшипников опор выбраны радиальные двухрядовые шарикоподшипники № 1610 ГОСТ5720 - 75 с внутренним диаметром 50 мм, наружным 110 мм, шириной 40 мм, динамическая грузоподъемность с = 63,7 кН, статическая с 0 = 23,6 кН.

Проверяем выбранные подшипники по . Требуемая динамическая грузоподъемность

Стр = F п · (53)

где F п - динамическая проведенная нагрузка, L - номинальная долговечность, млн. циклов, 3 - показатель степени кривой усталости Велера для шарикоподшипников.

Номинальная долговечность определяется по формуле

где n - частота вращения колца подшипника при установившемся движении, об/мин;

Т- требуемая долговечность подшипника, ч. Для группы режима работы 5М величина Т = 5000ч.

F п = F экв · r б · r темп (55)

где F экв - эквивалентная нагрузка; к б - коэффициент безопасности, к б = 1,2; к темп - температурный коэффициент, к темп = 1,05 (для 125 0 с)

Эквивалентная нагрузка определяется с учетом фактического или усредненного графика работы механизма (см. рисунок) в зависимости от группы режима работы:

где F 1 , F 2 …. F i - постоянные приведенные нагрузки на подшипник при различной массе транспортируемого груза, действующие в течение времени

t 1, t 2 , …. t i за срок службы, при соответствии частоте вращения n 1, n 2 ……n i ; Т - общий расчетный срок службы подшипника, ч;

n - частота вращения детали при установившемся режиме для движения, длящегося наиболее долго.

F п = 11126 · 1,2 · 1,05 = 14018,76 Н

С тр = 14018,76 ·

следовательно, выбранный подшипник оси барабана подходит.

Выполняем уточненный расчет оси барабана в опасных сечениях 1 - 1 и 2 - 2 (см. рисунок), а также в сечении 3 - 3.

Сечение 1 - 1. Изгибающий момент Ми = R 1 · (l 1 -), где l С - длина ступицы, l С = (1 1,5) · d С = 1,5 · 0,07 = 0,105 м

Ми = 14972,903 · (0,12 -) = 1010,603 Н · м

Запас прочности в рассчитываемом сечении по сопротивлению усталости определяется согласно .

где [n] - наименьший допустимый запас прочности для оси, [n] = 1,7;

r = 1,7 - коэффициент концентрации напряжений в данном сечении оси; = 1 - коэффициент упрочнения,

Е- масштабный фактор при изгибе, Е= 0,7; r у = 0,67 - коэффициент долговечности, - напряжение изгиба в рассчитываемом сечении.

Сечение 2 - 2. Изгибающий момент Ми = R 2 · (l 2 -)= 9799,827 (0,2 +) = 2474,456 Н · м

Сечение 3 - 3. Изгибающий момент Ми = R 2 · (l 2 -)= 9799,827 (0,2 -) = 1445,474 Н · м

Прочность оси в рассчитываемых сечениях обеспечивается.

Выполним расчет болтов, соединяющих фланец барабана в виде зубчатой полумуфты с обечайкой. Болты устанавливаем на диаметре окружности Д окр = (1,3 1,4) · Д з, где Д з = 0,252 м - наружный диаметр зубчатого венца редуктора. Д окр = 1,3 · 0,252 = 0,3276 м.

Соединение осуществляем болтами для отверстий из - под развертки по ГОСТ7817 - 80, материал болтов - сталь 45, тех = 353 МПа.

Окружное срезающие усилие, действующие на все болты

Р окр = 2 · S max · = 2 · 12386,364 · = 31079,426 H

Диаметр болта определяют по формуле

где m б = 0,75 · m б - расчетное число болтов, m б - установленое число болтов, принемаем m б = 8, тогда m б = 0,75 · 8 = 6; - допускаемое напряжение среза, определяемое по зависимости

где т - предел текучести материала болта;

r 1 - коэффициент безопасности, для механизмов подъема груза, кранов, работающих с крюком r1 = 1, 3;

r 2 - коэффициент нагрузки, r 2 = 1, 2

Принемаемп диаметр болта d = 0,008 м

Грузовой барабан – один из важнейших узлов подъемного крана. Предназначен он для намотки и равномерного распределения каната, который отвечает за подъем или опускание груза. Конструкция грузового барабана тщательно продумана, ведь даже небольшое нарушение может привести к сильному изгибу каната и перебоям в работе самого крана. Чтобы понять как этого избежать, следует тщательно разобраться с устройством барабана.


Чертеж устройства грузового барабана

Устройство грузового барабана

  • Цельная труба – главная деталь барабана. Именно на нее в процессе работы крана наматывается канат. Труба может иметь насечки на своей внешней поверхности, а может быть совершенно гладкой. Ниже мы рассмотрим этот пункт более подробно.
  • Фланцы – приварены к торцам трубы. А к ободу фланцев, в свою очередь, присоединены ступицы.
    Следует отметить, что запрессовка центрального вала происходит с помощью внутренней поверхности трубы, которая имеет цилиндрическую форму.
  • Зубчатое колесо – располагается на центральном валу. Его главная задача – соединение барабана с приводом редуктора, чтобы конструкция начала двигаться.

Наматывание троса грузового барабана

Этот процесс стоит рассмотреть отдельно, так как от него напрямую зависит качество работы, а также специфика устройства грузового барабана. Для того, чтобы во время наматывания канат укладывался на барабан равномерно, на внешней стороне трубы предусмотрены специальные канавки. Они исключают спутывание каната.

Диаметр канавок – ненамного превышает диаметр самого троса, что позволяет канату легко размещаться и не контактировать с боковинками барабана. При этом на одной части механизма канавки направлены в левую сторону, а на другой – в правую. Эта интересная особенность нужна, чтобы груз двигался в вертикальной плоскости без горизонтальных смещений относительно самого барабана.

Преимущества такого устройства грузового барабана: снижается нагрузка между тросом и трубой барабана, что позволяет увеличить срок службы самого механизма.

Между самими канавками располагается гладкая поверхность. Чаще всего концы троса крепятся по краям самого барабана. Канат, спускающийся с барабана, подсоединяется к внешним блокам крюковой подвески. Поэтому во время наматывания троса он навивается от края к средней части.

Особо стоить обратить внимание на краны с большим значением грузоподъемности и кратности полиспаста. На барабане таких кранов обязательно должны быть предусмотрены длинные участки без канавок для намотки. Это необходимо для стабильной работы, однако приводит к увеличению длины самого барабана и размеров подъемного механизма.

Чтобы ликвидировать этот существенный недостаток, используют другую схему подсоединения троса к барабану. Концы каната подсоединяются к краям средней части без нарезки и далее подаются к внутренним элементам подвески. Тогда во время перемещения груза вверх канат навивается уже от середины к краям.

СМАЗКА ПОДЪЕМНО-ТРАНСПОРТНОГО ОБОРУДОВАНИЯ

Наиболее распространенные электромостовые, поворотные, консольные, металлургические и другие краны имеют много общего в системе смазки, но в зависимости от различных эксплуатационных условий имеют и свои особенности.
Смазка крановых редукторов механизма подъема грузов и механизмов движения моста и тележки производится обычно посредством масляной ванны. Так как зубчатые зацепления в крановых редукторах работают в тяжелых условиях, с ударными нагрузками, частыми включениями и выключениями, то в них применяют более вязкие и маслянистые масла по сравнению с обычными редукторами станков. При заливке маслом крановых редукторов рекомендуется пользоваться указаниями, приведенными в табл.21.

Таблица 21
Смазка крановых редукторов в зависимости от грузоподъемности и режимов работы крана

Смена масла и промывка редукторов производится один раз в 4-6 месяцев и приурочивается обычно к плановому ремонту или осмотру крана. Для металлургических кранов срок службы масла сокращают до 2-3 месяцев. Перед вскрытием редукторов следует удалять пыль с их крышек во избежание попадания ее в масло. Уровень масла в редукторе должен быть не ниже контрольной отметки маслоуказателя; при его отсутствии масло рекомендуется заливать не выше уровня, достигающего 3-5 см до нижней части нижнего вала, но не ниже уровня, обеспечивающего погружение в масло полной высоты зубьев нижнего зубчатого колеса. Редукторы не должны иметь утечек масла. Особенно недопустимо его попадание на троллеи, настил моста крана и рельсы, а также на тормозные шкивы, колодки и ленты. При обнаружении утечек они немедленно устраняются.
Смазка подшипников крановых редукторов старых конструкций, где подшипники быстроходного первого вала редуктора имеют кольцевую смазку, при работе в нормальных температурных условиях производится путем заливки их один раз в 3 месяца маслом индустриальным 20, доливку производят один раз в 3-5 дней. В условиях повышенных температур и запыленности эти подшипники заливают ежемесячно маслом индустриальным 50, доливку производят 2-3 раза в неделю.
Подшипники скольжения в редукторах, имеющих колпачковые масленки, смазываются при нормальной температуре солидолом УС-2 или УСс-2 путем поворота крышки масленки на 1-2 оборота 1-2 раза в смену. При повышенных температурах смазка их производится консталином УТ-1 или УТс-1 поворотом крышки масленки на 1-2 оборота до 2-3 раз в смену.
В редукторах кранов современных конструкций обычно устанавливаются подшипники качения, которые при нормальных температурах следует заполнять солидолом УС-2 один раз в 4-6 месяцев, а для металлургических кранов смазкой 1 -13 или консталином УТ-1 при каждом ремонте. Смазку добавляют ежемесячно через подведенные к этим подшипникам колпачковые или пресс-масленки. При наличии в редукторах подшипников качения с густой смазкой следует обращать особое внимание на исправность уплотнений и не допускать вытекания смазки из корпуса подшипника или вымывания ее просочившимся маслом из ванны редуктора.
На некоторых кранах в редукторах устанавливается насос, подающий масло к подшипникам. В этом случае уход за ними сводится к контролю за наличием и качеством масла и исправной работой насоса.

Механизмы передвижения моста электрокранов большой грузоподъемности, особенно металлургических, в настоящее время выпускаются с централизованными системами смазки от автоматических или ручных смазочных станций. В этом случае смазку производят согласно инструкции по эксплуатации этих систем. Автоматическая централизованная смазочная система обеспечивает надежную подачу смазки ко всем смазочным точкам, в том числе и к удаленным и труднодоступным. При этом экономится время обслуживания, что особенно важно для непрерывно работающих кранов, а также значительно сокращается расход смазочных материалов.
В кранах старых конструкций смазка втулок ходовых колес подшипников скольжения трансмиссионного вала осуществляется обычно через колпачковые масленки, пресс-масленки или от центральных смазочных установок. Смазка кранов, работающих при нормальной температуре, например в механосборочных цехах, производится солидолом УС-2 или УСс-2 путем поворота крышек масленок на 1-2 оборота или наполнением пресс-масленок шприцем 1-2 раза в смену. Смазка ковочных, литейных, мульдо-завалочных и других металлургических кранов осуществляется конталином УТ-1 или УТс-1 поворотом крышек масленок на 2 оборота или заполнением пресс-масленок 2-3 раза в смену. Особо аккуратно должны смазываться удаленные точки, втулки ходовых колес и детали и узлы, подвергающиеся непосредственному воздействию высоких температур. Подшипники качения механизмов передвижения моста смазываются аналогично подшипникам качения крановых редукторов.
В качестве консистентных смазок для кранов, работающих на открытом воздухе зимой, применяют низкотемпературные смазки ЦИАТИМ-201, НК-30, № 21, ГОИ-54 и др. Места смазки наружных кранов необходимо оберегать от попадания в них воды снега.
В механизме передвижения тележки шестерни и подшипники редукторов, подшипники ходовых колес смазываются так же, как Соответствующие узлы механизма передвижения моста. Поскольку тележка постоянно перемещается вдоль моста, здесь особенно важно не допускать утечек масла из редукторов на настил и рельсы.
В механизме подъема груза редукторы и подшипники грузового барабана смазываются аналогично этим же узлам механизма движения моста и тележки. Так как механизм подъема работает напряженнее других механизмов крана, то смазку его узлов рекомендуется производить чаще. Смазка подшипников качения и Скольжения, осей крюковых обойм производится солидолом УС-2, при высоких температурах консталином путем набивки через масленки или пробки, расположенные в торцах осей блоков. Для кранов, работающих при нормальной температуре, смазку подают 2-3 раза в неделю, а для металлургических кранов -- не реже 1 раза в смену. Шариковые подшипники крюка обоймы заполняются при нормальных температурах солидолом УС-2 один раз в 3-6 месяцев, в металлургических кранах - консталином или смазкой 1-13 один раз в месяц.
Открытые зубчатые передачи во избежание быстрого износа смазываются: в кранах малой грузоподъемности с легким режимом работы и при нормальной температуре - полугудроном 1 раз в 5 дней, средней грузоподъемности и средним режимом работы при повышенной температуре - графитной мазью 1 раз в 5 дней и тяжелых металлургических кранов 2 раза в неделю - графитной мазью, приготовленной смешением 90% консталина и 10% графитного порошка, при нагреве не выше 110°. Перед нанесением смазки старую следует удалять.
Смазка электродвигателей приведена ниже. Подшипники барабанных контроллеров смазываются солидолом УС-2 или УС-3, сухарики, сегменты и храповые колеса - тонким слоем солидола УС-2 или техническим вазелином. Шарнирные соединения контак¬торов смазывают маслом индустриальным 30. Смазку деталей конечных выключателей систематически, не реже 1 раза в 10 дней, производят тем же маслом или солидолом УС-2 в зависимости от конструктивных особенностей узла. Смазка пальцев токоприемных роликов производится при обесточенных троллейных проводах один раз в неделю солидолом УС-2, а при высоких температурах консталином УТ-1.
Во избежание несчастных случаев смазка кранов должна производиться только в обесточенном состоянии всех механизмов крана на его посадочной площадке. Суточный запас смазочных материалов в чистой посуде (отдельной для каждого сорта) должен храниться в закрытом- ящике на мосту крана. Ввиду опасности для крановщиков, а также наличия большого количества труднодоступных точек смазки на кранах особенно настойчиво следует проводить перевод всех узлов на централизованную и автоматическую смазку.

Виды и сроки проведения технических освидетельствований крана.

Техническое освидетельствование проводится с целью установить, что грузоподъемная машина находится в исправном состоянии, обеспечивающем ее безопасную эксплуатацию. Кроме того, при техническом освидетельствовании проверяется правильность установки грузоподъемной машины и соблюдение регламентированных правилами габаритов. Различают полное и частичное техническое освидетельствование.

Полное техническое освидетельствование грузоподъемных машин складывается из осмотра их состояния, статического и динамического испытаний под нагрузкой. При частичном техническом освидетельствовании производится только осмотр грузоподъемной машины без испытания ее грузом.

Полному техническому освидетельствованию грузоподъемные машины должны подвергаться перед вводом в работу (первичное техническое освидетельствование) и периодически не реже одного раза в три года. Редко используемые краны (краны, обслуживающие машинные залы электрических и насосных станций, компрессорные установки и другие грузоподъемные машины, используемые только при ремонте оборудования) должны подвергаться полному периодическому техническому освидетельствованию не реже чем через каждые пять лет. Отнесение кранов, зарегистрированных в местных органах технадзора, к категории редко используемых производится этими органами, а остальных кранов -инженерно-техническим работником по надзору за грузоподъемными машинами на предприятии.

Частичное техническое освидетельствование всех грузоподъемных машин должно производиться не реже одного раза в 12 мес.

Полное первичное техническое освидетельствование стреловых самоходных (автомобильных, железнодорожных, гусеничных, пневмоколесных кранов, а также кранов-экскаваторов) и прицепных кранов, а также грузоподъемных машин, которые выпускаются с завода и перевозятся на место эксплуатации в собранном виде (например, электрические и ручные тали, лебедки), проводится отделом технического контроля завода-изготовителя перед отправкой их владельцу.

Полное первичное техническое освидетельствование всех остальных кранов (мостовых, башенных, портальных и др.) проводится после их монтажа на месте эксплуатации администрацией предприятия (инженерно-техническим работником по надзору в присутствии лица, ответственного за исправное состояние грузоподъемных машин на данном предприятии). Периодическое техническое освидетельствование (полное и частичное) кранов всех типов и других грузоподъемных машин, а также внеочередные технические освидетельствования проводятся администрацией предприятия - владельца машин.



Назначение и разновидности механизма подъема

Механизм подъема предназначен для подъема и опускания груза на необходимую высоту с заданной скоростью и удержания груза на любой, требуемой условиями технологического процесса, высоте.

Подъемный механизм может быть самостоятельным (тельфер, таль) или входить в состав другой перегрузочной установки, например в состав крана.

Механизм подъема включает в себя двигатель, передаточный механизм (редуктор или редуктор и открытую передачу), тормоз, грозовой барабан, блоки, тяговый орган (чаще всего стальной канат) и грузозахватное устройство (крюк, грузовая подвеска, грейфер и т.п.).

Входящие в состав кранов механизмы подъема грузов (грузовые лебедки) в зависимости от рода перегружаемого груза подразделяются на грейферные и крюковые лебедки.

Крюковые подъемные лебедки обычно имеют один электродвигатель, один или два грузовых барабана. При этом барабаны могут вращаться только одновременно и без изменения направления вращения относительно друг друга.

В зависимости от количества этих конструктивных элементов крюковые лебедки называются одномоторными однобарабанными или одномоторными двухбарабанными.

Конструктивное исполнение крюковых лебедок может быть самым различным в зависимости от количества барабанов и передаточных устройств (рис. 1. а, б, в).

Рис.6. Схемы одномоторных крюковых лебедок:

1 - электродвигатель; 2 - тормоз: 3 - редуктор: 4 - барабан: 5 – открытая передача.

Грейдерные (двухбарабанные) лебедки различают одномоторные и двухмоторные, позволяющие получить различные сочетания вращения барабанов, что необходимо для обеспечения работы грейфера. В грейферных лебедках кранов один барабан является замыкающим, а второй поддерживающим, аналогично и называются лебедки - одна замыкающая, а вторая - поддерживающая.

В процессе работы грейферного крана возможны следующие сочетания вращения барабанов:

При подъеме и опускании грейфера барабаны обеих лебедок вращаются синхронно;

При зачерпывании груза грейфером барабан замыкающей лебедки вращается в сторону подъема, барабан поддерживающей лебедки - на опускание, обеспечивая слабину каната по мере заглубления грейфера;

При раскрытии грейфера барабан замыкающей лебедки вращается на опускание, а барабан поддерживающей заторможен, иногда для более быстрого раскрытия грейфера барабаны лебедок вращают в разные стороны, т.е. замыкающий на спуск, а поддерживающий - на подъем.

Одномоторные грейферные лебедки (рис. 2) имеют один двигатель, обеспечивающий различное сочетание вращения барабанов посредством фрикционных муфт и тормозов. Двигатель жестко связан с замыкающим барабаном, поддерживающий же барабан присоединяется к двигателю посредством управляемой фрикционной или планетарной муфты.

Одномоторные лебедки менее совершенны и более сложны в управлении, в них совмещение таких операций, как подъем-опускание и раскрытие-закрытие грейфера невозможно (рис. 2.а).

Двухмоторные лебедки позволяет избежать этих недостатков, хотя они сложнее и дороже одномоторных лебедок, но повышение оперативности и производительности кранов окупает дополнительные затраты. В настоящее время двухмоторные лебедки являются основным типом грейферных лебедок кранов. Из большого разнообразия двухмоторных лебёдок наибольшее применение имеют лебедки, состоящие из двух нормальных крановых крюковых лебедок с независимыми двигателями (рис. 2. б), а также лебедки с планетарной связью между барабанами.

Главным требованием, предъявляемым к работе двухмоторных лебедок является равномерность распределения нагрузок на канаты и синхронность вращения барабанов с целью обеспечения равной скорости выборки канатов.

Министерство образования Российской Федерации

Санкт-Петербургский институт машиностроения

(ВТУЗ-ЛМЗ)

Кафедра «Теория механизмов и детали машин»

КРАН МОСТОВОЙ

МЕХАНИЗМ ПОДЪЁМА ГРУЗА

Санкт-Петербург

Механизм подъёма груза . Методические указания к курсовой работе для студентов ПИМаш смешанного и вечернего обучения всех специальностей. Изложен порядок расчета элементов механизма, методика расчета механизма подъёма, приведены справочные данные по выбору элементов механизма подъёма.

Редакция 1987г. Составитель: асс. .

Научный редактор: канд. техн. наук, доцент.

Редакция 2000г. Составитель: ст. преп. .

Научный редактор: докт. техн. наук, проф. Ю.А. Державец.

1. ОБЩИЕ УКАЗАНИЯ

Цель методических указаний - практическое усвоение курса «Подъёмно-транспортные машины» раздела: «Машины периодического действия», «Краны».

Объём курсовой работы - пояснительная записка на листах формата А4 (объёмом до 20 страниц) и чертеж узла на листе формата А2, которые выполняются в соответствии с требованиями ЕСКД. Все расчеты делаются в системе СИ.

Объект проектирования - механизм подъёма груза, барабан, подвеска.

Принципиальная схема механизма - составные части механизма, рис.1:

1 - электродвигатель;

2 - тормоз с тормозной муфтой;

4 - барабан и подвеска (на рис. не показана).

Действующие нагрузки - на рис.2 показана сила (грузоподъёмность) приложенная к крюку подвески 3.

Задание - помещено в Приложениях, приведены исходные данные для проектирования:


Грузоподъёмность ;

Скорость механизма подъёма груза ;

Высота подъёма груза ;

Режим работы механизма: Л- легкий, С - средний, Т - тяжелый, ВТ - весьма тяжелый.

Последовательность выполнения задания:

1) Выбор кратности полиспаста.

2) выбор диаметра каната.

3) Определение диаметра блока.

4) Определение размеров барабана и его частоты вращения.

5) Выбор электродвигателя.

6) Выбор редуктора.

7) Выбор тормозной муфты.

8) Выбор тормоза.

9) Проверочный расчет электродвигателя по времени пуска механизма подъема.

10) Проверочный расчет тормоза по времени торможения механизма подъёма.

ОБЩИЕ СВЕДЕНИЯ

В мостовых (козловых и др.) кранах механизм подъёма груза размещен на крановой тележке. Схема механизма подъёма кранов общего и специального назначений зависит от многих факторов: типа грузозахватного устройства, массы поднимаемого груза, высоты подъёма и т. д. Общая принципиальная схема механизма подъёма, характерная для кранов грузоподъёмностью 5...50 т, приведена на рис.1.

Рис.1. Кинематическая схема механизма подъёма груза.

Схема механизма подъёма груза позволяет производить блочную сборку узлов , с использованием стандартных элементов: электродвигателя 1, тормоза с тормозной муфтой 2, редуктора 3, барабана 4 и подвески (на схеме не показана). Такая компоновка схемы механизма подъёма груза наиболее распространена при серийном производстве, она широко применяется и является типовой для кранов малой и средней грузоподъёмности.

Кроме рассмотренной схемы, возможны другие компоновки механизма подъёма груза, такие как схемы с торсионным валом, с открытой передачей и т. д.

2. ВЫБОР КРАТНОСТИ ПОЛИСПАСТА

Для выигрыша в тяговом усилии в механизмах подъема используется п о л и с п а с т, который представляет собой систему подвижных (в крюковой подвеске) и неподвижных (обводных) блоков.

Для принятой схемы механизма подъёма следует выбирать тип полиспаста, определяемый схемой навивки каната на барабан и запрессовки каната , , .

При непосредственной навивке каната на барабан (мостовые, козловые, консольные краны) во избежание смещения груза при его подъёме-спуске и для равномерного нагружения опоры барабана применяются сдвоенные полиспасты

Рис.2. Схема сдвоенного полиспаста. 1 - барабан; 2 - уравнительный блок (обводной); 3 - подвеска; 4 - канат (гибкий тяговый орган).

При использовании сдвоенных полиспастов на барабан одновременно наматываются две ветви каната. В зависимости от грузоподъёмности крана выбирают кратность полиспаста . Повышение кратности на единицу достигается заменой уравнительного блока на противоположную сторону полиспаста; процесс можно повторять до достижения любой кратности.

Необходимая кратность полиспаста для механизма подъёма груза приведена в табл.1.

Таблица 1

КРАТНОСТЬ ПОЛИСПАСТА МЕХАНИЗМА ПОДЪЁМА ГРУЗА 0 " style="border-collapse:collapse">

Характер навивки на барабан

Тип полиспаста

Грузоподъёмность , T

Непосредственно на барабан (мостовой, козловой, консольный кран)

Сдвоенный

Через направляющий блок (стрелковые краны)

3. ВЫБОР ДИАМЕТРА КАНАТА

https://pandia.ru/text/78/240/images/image010_27.gif" width="33" height="24">


где: https://pandia.ru/text/78/240/images/image011_21.gif" width="15" height="19 src="> - запас прочности каната от режима работы (Л - 5; С - 5,5; Т и ВТ - 6);

https://pandia.ru/text/78/240/images/image013_18.gif" width="131" height="49">Наибольшее натяжение , КН, каната определяют

где: - грузоподъёмность крана, т, Приложение 1;

https://pandia.ru/text/78/240/images/image014_21.gif" width="24" height="20 src=">

Условия работы

КПД уравнительного

Кратность полиспаста

Редкая смазка

Нормальная смазка в условиях нормальных температур

Диаметр стального каната выбирают по табл.3 по условию (1). Наиболее широко применяют канаты двойной свивки маркированных групп =1600...1800 МПа. При более низких значениях маркировочных групп нерационально увеличен диаметр каната, а следовательно, барабана и блоков, а при более высоких канат имеет повышенную жесткость, что снижает срок его службы.

Таблица 3

ХАРАКТЕРИСТИКИ КАНАТОВ ДВОЙНОЙ СВИВКИ

Площадь сечения,

Масса 1000 м каната,

Разрывное усилие каната по маркировочным группам , кН

Тип ЛК-Р конструкции 6х19 1+6+6/6 + I о. с. (ГОСТ 2688-80)

Тип ТЛК-0 конструкции 6х37 1+6+15+15 + I о. с. (ГОСТ 3079-80)