AVR492: Управление бесколлекторным электродвигателем постоянного тока с помощью AT90PWM3. Бесколлекторные двигатели постоянного тока Бесколлекторный двигатель в постоянном режиме

Это разновидность электродвигателя переменного тока, у которого коллекторно-щеточный узел заменен бесконтактным полупроводниковым коммутатором, управляемым датчиком положения ротора. Иногда можно встретить такую аббревиатуру: BLDС - это brushless DC motor. Для простоты буду называть его двигатель-бесколлекторник или просто БК.

Бесколлекторные двигатели достаточно популярны из-за своей специфики: отсутствуют расходные материалы типа щеток, отсутствует угольная/металлическая пыль внутри от трения, отсутствуют искры (а это огромное направление взрыво и огне безопасных приводов/насосов). Используются начиная от вентиляторов и насосов заканчивая высокоточными приводами.
Основное применение в моделизме и любительских конструкциях: двигатели для радиоуправляемых моделей.

Общий смысл этих двигателей - три фазы и три обмотки (или несколько обмоток соединенных в три группы) управление которыми осуществляется сигналом в виде синусоиды или приближенной синусоиды по каждой из фаз, но с некоторым сдвигом. На рисунке простейшая иллюстрация работы трехфазного двигателя.

Соответственно, одним из специфичных моментов управления БК двигателями является применение специального контроллера-драйвера, который позволяет регулировать импульсы тока и напряжения по каждой фазе на обмотках двигателя, что в итоге дает стабильную работу в широком диапазоне напряжений. Это так называемые ESC контроллеры.

БК моторы для р/у техники бывают различных типоразмеров и исполнения. Одни из самых мощных это серии 22 мм, 36 мм и 40/42 мм. По конструкции они бывают с внешним ротором и внутренним (Outrunner, Inrunner). Моторы с внешним ротором по факту не имеют статичного корпуса (рубашки) и являются облегченными. Как правило, используют в авиамоделях, в квадракоптерах и т.п.
Двигатели с внешним статором проще сделать герметичными. Подобные применяют для р/у моделей, которые подвергаются внешним воздействиям тип грязи, пыли, влаги: багги, монстры, краулеры, водные р/у модели).
Например, двигатель типа 3660 можно запросто установить в р/у модель автомобиля типа багги или монстра и получить массу удовольствия.

Также отмечу различную компоновку самого статора: двигатели 3660 имеют 12 катушек, соединенных в три группы.
Это позволяет получить высокий момент на валу. Выглядит это примерно так.


Соединены катушки примерно вот так


Если разобрать двигатель и извлечь ротор, то можно увидеть катушки статора.
Вот что внутри 3660 серии


еще фото

Любительское применение подобным двигателей с высоким моментом - в самодельных конструкциях, где требуется малогабаритный мощный оборотистый двигатель. Это могут быть вентиляторы турбинного типа, шпиндели любительских станков и т.п.

Так вот, с целью установки в любительский станок для сверления и гравировки был взят набор бесколлекторного двигателя вместе с ESC контроллером
GoolRC 3660 3800KV Brushless Motor with ESC 60A Metal Gear Servo 9.0kg Set


Плюсом в наборе был сервопривод на 9 кг, что очень удобно для самоделок.

Общие требования при выборе мотора были следующие:
- Количество оборотов/вольт не менее 2000, так как планировалось использование с низковольтными источниками (7.4...12В).
- Диаметр вала 5мм. Рассматривал варианты с валом 3.175 мм (это серия 24 диаметра БК двигателей, например, 2435), но тогда бы пришлось докупать новый патрон ER11. Есть варианты еще мощнее, например, двигатели 4275 или 4076, с валом 5 мм, но они соответственно дороже.

Характеристики бесколлекторного мотора GoolRC 3660:
Модель: GoolRC 3660
Мощность: 1200W
Рабочее напряжение: до 13V
Предельный ток: 92A
Обороты на вольт (RPM/Volt): 3800KV
Максимальные обороты: до 50000
Диаметр корпуса: 36mm
Длина корпуса: 60mm
Длина вала: 17mm
Диаметр вала: 5mm
Размер установочных винтов: 6 шт * M3 (короткие, я использовал М3*6)
Коннекторы: 4mm позолоченные «бананы» male
Защита: от пыли и влаги

Характеристики ESC контроллера:
Модель: GoolRC ESC 60A
Продолжительный ток: 60A
Пиковый ток: 320A
Применяемый аккумуляторные батареи: 2-3S Li-Po / 4-9S Ni-Mh Ni-Cd
BEC: 5.8V / 3A
Коннекторы (Вход): T plug male
Коннекторы (вызод.): 4mm позолоченные «бананы» female
Размеры: 50 х 35 х 34mm (без учета длины кабелей)
Защита: от пыли и влаги

Характеристики сервомашинки:
Рабочее напряжение: 6.0V-7.2V
Скорость поворота (6.0V): 0.16sec/60° без нагрузки
Скорость поворота (7.2V): 0.14sec/60° без нагрузки
Момент удержания (6.0V): 9.0kg.cm
Момент удержания (7.2V): 10.0kg.cm
Размеры: 55 х 20 х 38mm (Д * Ш * В)

Параметры комплекта:
Размер упаковки: 10.5 х 8 х 6 см
Масса упаковки: 390 гр
Фирменная упаковка с логотипом GoolRC

Состав комплекта:
1 * GoolRC 3660 3800KV Motor
1 * GoolRC 60A ESC
1 * GoolRC 9KG Servo
1 * Информационный листок


Размеры для справки и внешний вид двигателя GoolRC 3660 с указанием основных моментов

Теперь несколько слов о самой посылке.
Посылка пришла в виде небольшого почтового пакета с коробкой внутри


Доставлялась альтернативной почтовой службой, не почтой России, о чем и гласит транспортная накладная


В посылке фирменная коробочка GoolRC


Внутри комплект бесколлекторного двигателя типоразмера 3660 (36х60 мм), ESC-контроллера для него и сервомашинки с комплектом


Теперь рассмотрим весь комплект по отдельным составляющим. Начнем с самого главного - с двигателя.

БК двигатель GoolRC представляет собой цилиндр из алюминия, размеры 36 на 60 мм. С одной стороны выходят три толстых провода в силиконовой оплетке с «бананами», с другой стороны вал 5 мм. Ротор с двух сторон установлен на подшипниках качения. На корпусе присутствует маркировка модели


Еще фотография. Внешняя рубашка неподвижная, т.е. тип мотора Inrunner.


Маркировка на корпусе


С заднего торца видно подшипник


Заявлена защита от брызг и влаги
Выходят три толстых, коротких провода для подключения фаз: u v w. Если будете искать клеммы для подключения - это бананы 4 мм


Провода имеют термоусадку разного цвета: желтый, оранжевый и синий


Размеры мотора: диаметр и длина вала совпадают с заявленными: Вал 5х17 мм




Габариты корпуса двигателя 36х60 мм




Сравнение с коллекторным 775 двигателем


Сравнение с б/к шпинделем на 300Вт (и ценой около $100). Напоминаю, что у GoolRC 3660 заявлена пиковая мощность 1200Вт. Даже если использовать треть мощности, все равно это дешевле и больше, чем у этого шпинделя


Сравнение с другими модельными двигателями


Для корректной работы двигателя потребуется специальный ESC контроллер (который есть в комплекте)

ESC контроллер - это плата драйвера двигателя с преобразователем сигнала и мощными ключами. На простых моделях вместо корпуса используется термоусадка, на мощных - корпус с радиатором и активным охлаждением.


На фото контроллер GoolRC ESC 60A по сравнению с «младшим» братом ESC 20A


Обратите внимание: присутствует тумблер выключения-выключения на отрезке провода, который можно встроить в корпус устройства/игрушки


Присутствует полный комплект разъемов: входные Т-коннекторы, 4 мм бананы-гнезда, 3-пиновый вход управляющего сигнала


Силовые бананы 4 мм - гнезда, маркируются аналогично по цветам: желтый, оранжевый и синий. При подключении перепутать можно только умышленно


Входные Т-коннекторы. Аналогично перепутать полярность можно если вы очень сильный)))))


На корпусе присутствует маркировка с названием и характеристиками, что очень удобно


Охлаждение активное, работает и регулируется автоматически.

Для оценки размеров приложил PCB ruller

В наборе также присутствует сервомашинка GoolRC на 9 кг.


Плюс как и для любой другой сервомашинки в комплекте идет набор рычагов (двойной, крест, звезда, колесо) и крепежная фурнитура (понравилось, что есть проставки из латуни)


Макрофото вала сервомашинки


Пробуем закрепить крестообразный рычаг для фотографии


На самом деле интересно проверить заявленные зарактеристики - это металлический комплект шестерен внутри. Разбираем сервомашинку. Корпус сидит на герметике по кругу, а внутри присутствует обильная смазка. Шестерни и правда металлические.


Фото платы управления сервой

Для чего все это затевалось: для того, чтобы попробовать БК двигатель как сверлилку/гравировалку. Все таки заявлена пиковая мощность 1200Вт.
Я выбрал проект сверлильного станка для подготовки печатных плат на . Там есть множество проектов для изготовления светильного настольного станка. Как правило, все эти проекты малогабаритные и предназначены для установки небольшого двигателя постоянного тока.


Я выбрал один из и доработал крепление в части держателей двигателя 3660 (родной двигатель был меньше и имел другие размеры креплений)

Привожу чертеж посадочных мест и габаритов двигателя 3660


В оригинале стоит более слабый двигатель. Вот эскиз крепления (6 отверстий для М3х6)


Скрин из программы для печати на принтере


Заодно напечатал и хомут для крепления сверху


Мотор 3660 с установленным цанговым патроном типа ER11




Для подключения и проверки БК мотора потребуется собрать следующую схему: источник питания, сервотестер или плата управления, ESC-контроллер двигателя, двигатель.
Я использую самый простой сервотестер, он также дает нужный сигнал. Его можно использовать для включения и для регулировки оборотов двигателя


При желании можно подключить микроконтроллер (Ардуино и т.п.). Привожу схему из интернета с подключением аутраннера и 30А контроллера. Скетчи найти не проблема.


Соединяем все, по цветам.


Источник показывает, что холостой ток контроллера небольшой (0.26А)


Теперь сверлильный станок.
Собираем все и крепим на стойку




Для проверки собираю без корпуса, потом допечатаю корпус, куда можно установить штатный выключатель, крутилку сервотестера


Еще одно применение подобного 3660 БК двигателя - в качестве шпинделя станков для сверления и фрезеровки печатных плат






Про сам станок обзор доделаю чуть позже. Будет интересно проверить гравировку печатных плат с помощью GoolRC 3660

Заключение

Двигатель качественный, мощный, крутящий момент с запасом подойдет под любительские цели.
Конкретно живучесть подшипников при боковом усилии при фрезеровки/гравировки покажет время.
Определенно существует выгода применения модельных двигателей в любительских целях, а также простота работы и сборки конструкций на них по сравнению с шпинделями для ЧПУ, которые дороже и требуют специального оборудования (источники питания с регулировкой оборотов, драйверы, охлаждение и т.п.).

При заказе пользовался купоном SALE15 со скидкой 5% на все товары магазина.

Спасибо за внимание!

Планирую купить +61 Добавить в избранное Обзор понравился +92 +156

Опубліковано 11.04.2013

Общее устройство (Inrunner, Outrunner)

Бесколлекторный двигатель постоянного тока состоит из ротора с постоянными магнитами и статора с обмотками. Различают два типа двигателей: Inrunner , у которых магниты ротора находятся внутри статора с обмотками, и Outrunner , у которых магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками.

Схему Inrunner обычно применяют для высокооборотистых двигателей с небольшим количеством полюсов. Outrunner при необходимости получить высокомоментный двигатель со сравнительно небольшими оборотами. Конструктивно Inrunners проще из за того, что неподвижный статор может служить корпусом. К нему могут быть смонтированы крепежные приспособления. В случае Outrunners вращается вся внешняя часть. Крепеж двигателя осуществляется за неподвижную ось либо детали статора. В случае мотор-колеса крепление осуществляется за неподвижную ось статора, провода заводятся к статору через полую ось.

Магниты и полюса

Количество полюсов на роторе четное. Форма применяемых магнитов обычно прямоугольная. Цилиндрические магниты применяются реже. Устанавливаются они с чередованием полюсов.

Количество магнитов не всегда соответствует количеству полюсов. Несколько магнитов могут формировать один полюс:

В этом случае 8 магнитов формируют 4 полюса. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу.

Магниты на роторе закрепляются с помощью специального клея. Реже встречаются конструкции с держателем магнитов. Материал ротора может быть магнитопроводящим (стальным), немагнитопроводящим (алюминиевые сплавы, пластики и т.п.), комбинированным.

Обмотки и зубья

Обмотка трехфазного бесколлекторного двигателя выполняется медным проводом. Провод может быть одножильным или состоять из нескольких изолированных жил. Статор выполняется из нескольких сложенных вместе листов магнитопроводящей стали.

Количество зубьев статора должно делиться на количество фаз. т.е. для трехфазного бесколлекторного двигателя количество зубьев статора должно делиться на 3 . Количество зубьев статора может быть как больше так и меньше количества полюсов на роторе. Например существуют моторы со схемами: 9 зубьев/12 магнитов; 51 зуб/46 магнитов.

Двигателя с 3-х зубым статором применяют крайне редко. Поскольку в каждый момент времени работает только две фазы (при включении звездой), магнитные силы воздействуют на ротор не равномерно по всей окружности (см. рис.).

Силы, воздействующие на ротор, стараются его перекосить, что приводит к увеличению вибраций. Для устранения этого эффекта статор делают с большим количеством зубьев, а обмотку распределяют по зубьям всей окружности статора как можно равномернее.

В этом случае магнитные силы, воздействующие на ротор, компенсируют друг друга. Дисбаланса не возникает.

Варианты распределения обмоток фаз по зубьям статора

Вариант обмотки на 9 зубов


Вариант обмотки на 12 зубов

В приведенных схемах число зубов выбрано таким образом, чтобы оно делилось не только на 3 . Например, при 36 зубьях приходится 12 зубьев на одну фазу. 12 зубьев можно распределить так:

Наиболее предпочтительна схема 6 групп по 2 зуба.

Существует двигатель с 51 зубом на статоре! 17 зубов на одну фазу. 17 – это простое число , оно нацело делится только на 1 и на само себя. Как же распределить обмотку по зубьям? Увы, но я не смог найти в литературе примеров и методик, которые помогли бы решить эту задачу. Оказалось, что обмотка распределялась следующим образом:

Рассмотрим реальную схему обмотки.

Обратите внимание, что обмотка имеет разные направления намотки на разных зубьях. Разные направления намотки обозначаются прописными и заглавными буквами. Детально о проектировании обмоток можно прочитать в литературе, предложенной в конце статьи.

Классическая обмотка выполняется одним проводом для одной фазы. Т.е. все обмотки на зубьях одной фазы соединены последовательно.

Обмотки зубьев могут соединяться и параллельно.

Так же могут быть комбинированные включения

Параллельное и комбинированное включение позволяет уменьшить индуктивность обмотки, что приводит к увеличению тока статора (следовательно и мощности) и скорости вращения двигателя.

Обороты электрические и реальные

Если ротор двигателя имеет два полюса, то при одном полном обороте магнитного поля на статоре, ротор совершает один полный оборот. При 4 полюсах, чтобы повернуть вал двигателя на один полный оборот потребуется два оборота магнитного поля на статоре. Чем больше количество полюсов ротора, тем больше потребуется электрических оборотов для вращения вала двигателя на один оборот. Например, имеем 42 магнита на роторе. Для того чтобы провернуть ротор на один оборот, потребуется 42/2=21 электрический оборот. Это свойство можно использовать как своеобразный редуктор. Подобрав необходимое количество полюсов, можно получить двигатель с желаемыми скоростными характеристиками. Кроме того, понимание этого процесса будет нам необходимо в будущем, при выборе параметров регулятора.

Датчики положения

Устройство двигателей без датчиков отличается от двигателей с датчиками только отсутствием последних. Других принципиальных отличий нет. Наиболее распространены датчики положения, работающие на основе эффекта Холла. Датчики реагируют на магнитное поле, их располагают, как правило, на статоре таким образом, чтобы на них воздействовали магниты ротора. Угол между датчиками должен быть 120 градусов.

Имеется в виду “электрических” градусов. Т.е. для многополюсного двигателя физическое расположение датчиков может быть таким:


Иногда датчики располагают снаружи двигателя. Вот один из примеров расположения датчиков. На самом деле это был двигатель без датчиков. Таким простым способом его оснастили датчиками холла.

На некоторых двигателях датчики устанавливают на специальном устройстве, которое позволяет перемещать датчики в определенных пределах. С помощью такого устройства устанавливается угол опережения (timing). Однако, если двигатель требует реверса (вращения в обратную сторону) потребуется второй комплект датчиков, настроенных на обратный ход. Поскольку timing не имеет решающего значения при старте и низких оборотах, можно установить датчики в нулевую точку, а угол опережения корректировать программно, когда двигатель начнет вращаться.

Основные характеристики двигателя

Каждый двигатель рассчитывается под определенные требования и имеет следующие основные характеристики:

  • Режим работы на который рассчитан двигатель: длительный или кратковременный. Длительный режим работы подразумевает, что двигатель может работать часами. Такие двигатели рассчитываются таким образом, чтобы теплоотдача в окружающую среду была выше тепловыделения самого двигателя. В этом случае он не будет разогреваться. Пример: вентиляция, привод эскалатора или конвейера. Кратковременный – подразумевает, что двигатель будет включаться на короткий период, за который не успеет разогреться до максимальной температуры, после чего следует длительный период, за время которого двигатель успевает остыть. Пример: привод лифта, электробритвы, фены.
  • Сопротивление обмотки двигателя . Сопротивление обмотки двигателя влияет на КПД двигателя. Чем меньше сопротивление, тем выше КПД. Измерив сопротивление, можно выяснить наличие межвиткового замыкания в обмотке. Сопротивление обмотки двигателя составляет тысячные доли Ома. Для его измерения требуется специальный прибор или специальная методика измерения.
  • Максимальное рабочее напряжение . Максимальное напряжение, которое способна выдержать обмотка статора. Максимальное напряжение взаимосвязано со следующим параметром.
  • Максимальные обороты . Иногда указывают не максимальные обороты, а Kv – количество оборотов двигателя на один вольт без нагрузки на валу. Умножив этот показатель на максимальное напряжение, получим максимальные обороты двигателя без нагрузки на валу.
  • Максимальный ток . Максимально допустимый ток обмотки. Как правило, указывается и время, в течение которого двигатель может выдержать указанный ток. Ограничение максимального тока связано с возможным перегревом обмотки. Поэтому при низких температурах окружающей среды реальное время работы с максимальным током будет больше, а в жару двигатель сгорит раньше.
  • Максимальная мощность двигателя. Напрямую связана с предыдущим параметром. Это пиковая мощность, которую двигатель может развить на небольшой период времени, обычно – несколько секунд. При длительной работе на максимальной мощности неизбежен перегрев двигателя и выход его из строя.
  • Номинальная мощность . Мощность, которую двигатель может развивать на протяжении всего времени включения.
  • Угол опережения фазы (timing) . Обмотка статора имеет некоторую индуктивность, которая затормаживает рост тока в обмотке. Ток достигнет максимума через некоторое время. Для того, чтобы компенсировать эту задержку переключение фаз выполняют с некоторым опережением. Аналогично зажиганию в двигателе внутреннего сгорания, где выставляется угол опережения зажигания с учетом времени воспламенения топлива.

Так же следует обратить внимание на то, что при номинальной нагрузке Вы не получите максимальных оборотов на валу двигателя. Kv указывается для не загруженного двигателя. При питании двигателя от батарей следует учесть “проседание” питающего напряжения под нагрузкой, что в свою очередь также снизит максимальные обороты двигателя.

Отличительные особенности:

  • Общие сведения о БКЭПТ
  • Использует контроллер силового каскада
  • Пример программного кода

Введение

В данных рекомендациях по применению описывается, как реализовать устройство управления бесколлекторным электродвигателем постоянного тока (БКЭПТ) с использованием датчиков положения на основе AVR-микроконтроллера AT90PWM3 .

Высокопроизводительное AVR-ядро микроконтроллера, которое содержит контроллер силового каскада, позволяет реализовать устройство управления высокоскоростным бесколлекторным электродвигателем постоянного тока.

В данном документе дается короткое описание принципа действия бесколлекторного электродвигателя постоянного тока, а в деталях рассматривается управление БКЭПТ в сенсорном режиме, а также приводится описание принципиальной схемы опорной разработки ATAVRMC100 , на которой основаны данные рекомендации по применению.

Обсуждается также программная реализация с программно-реализованным контуром управления на основе ПИД-регулятора. Для управления процессом коммутации подразумевается использование только датчиков положения на основе эффекте Холла.

Принцип действия

Области применения БКЭПТ непрерывно увеличиваются, что связано с рядом их преимуществ:

  1. Отсутствие коллекторного узла, что упрощает или даже вообще исключает техническое обслуживание.
  2. Генерация более низкого уровня акустического и электрического шума по сравнению с универсальными коллекторными двигателями постоянного тока.
  3. Возможность работы в опасных средах (с воспламеняемыми продуктами).
  4. Хорошее соотношение массогабаритных характеристик и мощности...

Двигатели такого типа характеризуются небольшой инерционностью ротора, т.к. обмотки расположены на статоре. Коммутация управляется электроникой. Моменты коммутации определяются либо по информации от датчиков положения, либо путем измерения обратной э.д.с., генерируемой обмотками.

При управлении с использованием датчиков БКЭПТ состоит, как правило, из трех основных частей: статор, ротор и датчики Холла.

Статор классического трехфазного БКЭПТ содержит три обмотки. Во многих двигателях обмотки разделяются на несколько секций, что позволяет уменьшить пульсации вращающего момента.

На рисунке 1 показана электрическая схема замещения статора. Он состоит из трех обмоток, каждая из которых содержит три последовательно включенных элемента: индуктивность, сопротивление и обратная э.д.с.

Рисунок 1. Электрическая схема замещения статора (три фазы, три обмотки)

Ротор БКЭПТ состоит из четного числа постоянных магнитов. Количество магнитных полюсов в роторе также оказывает влияние на размер шага вращения и пульсации вращающего момента. Чем большее количество полюсов, тем меньше размер шага вращения и меньше пульсации вращающего момента. Могут использоваться постоянные магниты с 1..5 парами полюсов. В некоторых случаях число пар полюсов увеличивается до 8 (рисунок 2).


Рисунок 2. Статор и ротор трехфазного, трехобмоточного БКЭПТ

Обмотки установлены стационарно, а магнит вращается. Ротор БКЭПТ характеризуется более легким весом относительно ротора обычного универсального двигателя постоянного тока, у которого обмотки расположены на роторе.

Датчик Холла

Для оценки положения ротора в корпус двигателя встраиваются три датчика Холла. Датчики установлены под углом 120° по отношению друг к другу. С помощью данных датчиков возможно выполнить 6 различных переключений.

Коммутация фаз зависит от состояния датчиков Холла.

Подача напряжений питания на обмотки изменяется после изменения состояний выходов датчиков Холла. При правильном выполнении синхронизированной коммутации вращающий момент остается приблизительно постоянным и высоким.


Рисунок 3. Сигналы датчиков Холла в процессе вращения

Коммутация фаз

В целях упрощенного описания работы трехфазного БКЭПТ рассмотрим только его версию с тремя обмотками. Как было показано ранее, коммутация фаз зависит от выходных значений датчиков Холла. При корректной подаче напряжения на обмотки двигателя создается магнитное поле и инициируется вращение. Наиболее распространенным и простым способом управления коммутацией, используемый для управления БКЭПТ, является схема включения-отключения, когда обмотка либо проводит ток, либо нет. В один момент времени могут быть запитаны только две обмотки, а третья остается отключенной. Подключение обмоток к шинам питания вызывает протекание электрического тока. Данный способ называется трапецеидальной коммутацией или блочной коммутацией.

Для управления БКЭПТ используется силовой каскад, состоящих из 3 полумостов. Схема силового каскада показана на рисунке 4.


Рисунок 4. Силовой каскад

По считанным значениям датчиков Холла определяется, какие ключи должны быть замкнутыми.

Таблица 1. Коммутация ключей по часовой стрелке

У двигателей с несколькими полями электрическое вращение не соответствует механическому вращению. Например, у четырехполюсных БКЭПТ четыре цикла электрического вращения соответствуют одному механическому вращению.

От силы магнитного поля зависит мощность и частота вращения двигателя. Регулировать частоту вращения и вращающий момент двигателя можно за счет изменения тока через обмотки. Наиболее распространенный способ управления током через обмотки является управление средним током. Для этого используется широтно-импульсная модуляция (ШИМ), рабочий цикл которой определяет среднее значение напряжения на обмотках, а, следовательно, и среднее значение тока и, как следствие, частоту вращения. Скорость может регулироваться при частотах от 20 до 60 кГц.

Вращающееся поле трехфазного, трехобмоточного БКЭПТ показано на рисунке 5.


Рисунок 5. Ступени коммутации и вращающееся поле

Процесс коммутации создает вращающееся поле. На ступени 1 фаза А подключается к положительной шине питания ключом SW1, фаза В подключается к общему с помощью ключа SW4, а фаза С остается неподключенной. Фазами А и В создаются два вектора магнитного потока (показаны красной и синий стрелками, соответственно), а сумма этих двух векторов дает вектор магнитного потока статора (зеленая стрелка). После этого ротор пытается следовать магнитному потоку. Как только ротор достигает некоторого положения, в котором изменяется состояние датчиков Холла со значения "010" на "011", выполняется соответствующим образом переключение обмоток двигателя: фаза В остается незапитанной, а фаза С подключается к общему. Это приводит к генерации нового вектора магнитного потока статора (ступень 2).

Если следовать схеме коммутации, показанной на рисунке 3 и в таблице 1, то получим шесть различных векторов магнитного потока, соответствующих шести ступеням коммутации. Шесть ступеней соответствуют одному обороту ротора.

Стартовый набор ATAVRMC100

Принципиальная электрическая схема представлена на рисунках 21, 22, 23 и 24 в конце документа.

Программа содержит контур управления скоростью с помощью ПИД-регулятора. Такой регулятор состоит из трех звеньев, каждый из которых характеризуется собственным коэффициентом передачи: Kп, Kи и Kд.

Кп - коэффициент передачи пропорционального звена, Kи - коэффициент передачи интегрирующего звена и Kд - коэффициент передачи дифференцирующего звена. Отклонение заданной скорости от фактической (на рисунке 6 называется "сигнал рассогласования") обрабатывается каждым из звеньев. Результат данных операций складывается и подается на двигатель для получения требуемой частоты вращения (см. рисунок 6).


Рисунок 6. Структурная схема ПИД-регулятора

Коэффициент Кп влияет на длительность переходного процесса, коэффициент Ки позволяет подавить статические ошибки, а Кд используется, в частности, для стабилизации положения (см. описание контура управления в архиве с программным обеспечением для изменения коэффициентов).

Описание аппаратной части

Как показано на рисунке 7 микроконтроллер содержит 3 контроллера силового каскада (PSC). Каждый PSC можно рассматривать как широтно-импульсный модулятор (ШИМ) с двумя выходными сигналами. Во избежание возникновения сквозного тока PSC поддерживает возможность управления задержкой неперекрытия силовых ключей (см. документацию на AT90PWM3 для более детального изучения работы PSC, а также рисунок 9).

Аварийный вход (Over_Current, токовая перегрузка) связан с PSCIN. Аварийный вход разрешает микроконтроллеру отключить все выходы PSC.


Рисунок 7. Аппаратная реализация

Для измерения тока можно использовать два дифференциальных канала с программируемым усилительным каскадом (Ку=5, 10, 20 или 40). После выбора коэффициента усиления необходимо подобрать номинал шунтового резистора для наиболее полного охвата диапазона преобразования.

Сигнал Over_Current формируется внешним компаратором. Пороговое напряжение компаратора можно регулироваться с помощью внутреннего ЦАП.

Переключение фаз должно выполняться в соответствии со значением на выходах датчиков Холла. ДХ_A, ДХ_B и ДХ_C подключаются к входам источников внешних прерываний или к трем внутренним компараторам. Компараторы генерируют такой же тип прерываний, что и внешние прерывания. На рисунке 8 показано, как используются порты ввода-вывода в стартовом наборе.


Рисунок 8. Использование портов ввода-вывода микроконтроллера (корпус SO32)

VMOT (Vдв.) и VMOT_Half (1/2 Vдв.) реализованы, но не используются. Они могут использоваться для получения информации о напряжении питания двигателя.

Выходы H_x и L_x используются для управления силовым мостом. Как было сказано выше, они зависят от контроллера силового каскада (PSC), который генерирует ШИМ-сигналы. В таком применении рекомендуется использовать режим с выравниванием по центру (см. рисунок 9), когда регистр OCR0RA используется для синхронизации запуска преобразования АЦП для измерения тока.


Рисунок 9. Осциллограммы сигналов PSCn0 и PSCn1 в режиме с выравниванием по центру

  • Время вкл. 0 = 2 * OCRnSA * 1/Fclkpsc
  • Время вкл. 1 = 2* (OCRnRB - OCRnSB + 1) * 1/Fclkpsc
  • Период PSC = 2 * (OCRnRB + 1) * 1/Fclkpsc

Пауза неперекрытия между PSCn0 и PSCn1:

  • |OCRnSB - OCRnSA| * 1/Fclkpsc

Блок PSC тактируется сигналов CLKPSC.

Для подачи ШИМ-сигналов в силовой каскад может использоваться один из двух способов. Первый заключается в приложении ШИМ-сигналов к верхним и нижним частям силового каскада, а второй - в приложении ШИМ-сигналов только к верхним частям.

Описание программного обеспечения

Atmel разработала библиотеки для управления БКЭПТ. Первый шаг их использования заключается в конфигурации и инициализации микроконтроллера.

Конфигурация и инициализация микроконтроллера

Для этого необходимо использовать функцию mc_init_motor(). Она вызывает функции инициализации аппаратной и программной части, а также инициализирует все параметры двигателя (направление вращения, частота вращения и останов двигателя).

Структура программной реализации

После конфигурации и инициализации микроконтроллера может быть выполнен запуск двигателя. Для управления двигателем необходимо только несколько функций. Все функции определены в mc_lib.h:

Void mc_motor_run(void) - Используется для запуска двигателя. Вызывается функция контура стабилизации для установки рабочего цикла ШИМ. После этого выполняется первая фаза коммутации. Bool mc_motor_is_running(void) - Определение состояния двигателя. Если "1", то двигатель работает, если "0", то двигатель остановлен. void mc_motor_stop(void) - Используется для остановки двигателя. void mc_set_motor_speed(U8 speed) - Установка заданной пользователем скорости. U8 mc_get_motor_speed(void) - Возвращает заданную пользователем скорость. void mc_set_motor_direction(U8 direction) - Установка направления вращения "CW" (по часовой стрелке) или "CCW" (против часовой стрелки). U8 mc_get_motor_direction(void) - Возвращает текущее направление вращения двигателя. U8 mc_set_motor_measured_speed(U8 measured_speed) - Сохранение измеренной скорости в переменной measured_speed. U8 mc_get_motor_measured_speed(void) - Возвращает измеренную скорость. void mc_set_Close_Loop(void) void mc_set_Open_Loop(void) - Конфигурация контура стабилизации: замкнутый контур или разомкнутый (см. рисунок 13).


Рисунок 10. Конфигурация AT90PWM3


Рисунок 11. Структура программного обеспечения

На рисунке 11 показаны четыре переменные mc_run_stop (пуск/стоп), mc_direction (направление), mc_cmd_speed (заданная скорость) и mc_measured_speed (измеренная скорость). Они являются основными программными переменными, доступ к которым может выполняться посредством ранее описанных пользовательских функций.

Программную реализацию можно рассматривать как черный ящик с наименованием "Управление двигателем" (рисунок 12) и несколькими входами (mc_run_stop, mc_direction, mc_cmd_speed, mc_measured_speed) и выходами (все сигналы управления силовым мостом).


Рисунок 12. Основные программные переменные

Большинство функций доступны в mc_drv.h. Только некоторые из них зависят от типа двигателя. Функции можно разделить на четыре основных класса:

  • Инициализация аппаратной части
  • void mc_init_HW(void); Инициализация аппаратной части полностью выполнена в этой функции. Здесь выполняется инициализация портов, прерываний, таймеров и контроллера силового каскада.

    Void mc_init_SW(void); Используется для инициализации программного обеспечения. Разрешает все прерывания.

    Void mc_init_port(void); Инициализация порта ввода-вывода путем задания через регистры DDRx, какие выводы функционируют как вход, а какие как выход, а также с указанием, на каких входах необходимо включить подтягивающие резисторы (через регистр PORTx).

    Void mc_init_pwm(void); Данная функция запускает ФАПЧ и устанавливает все регистры PSC в исходное состояние.

    Void mc_init_IT(void); Модифицируйте данную функцию для разрешения или запрета типов прерываний.

    Void PSC0_Init (unsigned int dt0, unsigned int ot0, unsigned int dt1, unsigned int ot1); void PSC1_Init (unsigned int dt0, unsigned int ot0, unsigned int dt1, unsigned int ot1); void PSC2_Init (unsigned int dt0, unsigned int ot0, unsigned int dt1, unsigned int ot1); PSCx_Init позволяет пользователю выбрать конфигурацию контроллера силового каскада (PSC) микроконтроллера.

  • Функции коммутации фаз U8 mc_get_hall(void); Считывание состояния датчиков Холла, соответствующее шести ступеням коммутации (HS_001, HS_010, HS_011, HS_100, HS_101, HS_110).

    Interrupt void mc_hall_a(void); _interrupt void mc_hall_b(void); _interrupt void mc_hall_c(void); Данные функции выполняются, если выявлено внешнее прерывание (изменение выхода датчиков Холла). Они позволяют выполнить коммутацию фаз и вычислить скорость.

    Void mc_duty_cycle(U8 level); Данная функция устанавливает рабочий цикл ШИМ в соответствии с конфигурацией PSC.

    Void mc_switch_commutation(U8 position); Коммутация фаз выполняется в соответствии со значением на выходах датчиков Холла и только в случае, если пользователь запустит двигатель.

  • Конфигурация времени преобразования void mc_config_sampling_period(void); Инициализация таймера 1 для генерации прерывания каждые 250 мкс. _interrupt void launch_sampling_period(void); После активизации 250 мкс-ого прерывания устанавливает флаг. Он может использоваться для управления временем преобразования.
  • Оценка скорости void mc_config_time_estimation_speed(void); Конфигурация таймера 0 для выполнения функции вычисления скорости.

    Void mc_estimation_speed(void); Данная функция вычисляет частоту вращения двигателя на основе принципа измерения периода следования импульсов датчика Холла.

    Interrupt void ovfl_timer(void); При возникновении прерывания выполняется приращение 8-разрядной переменной для реализации 16-разрядного таймера с помощью 8-разрядного таймера.

  • Измерение тока _interrupt void ADC_EOC(void); Функция ADC_EOC выполняется сразу после завершения преобразования усилителя для установки флага, который может использоваться пользователем.

    Void mc_init_current_measure(void); Данная функция инициализирует усилитель 1 для измерения тока.

    U8 mc_get_current(void); Считывание значения тока, если преобразование завершено.

    Bool mc_conversion_is_finished(void); Индицирует завершение преобразования.

    Void mc_ack_EOC(void); Сброс флага завершения преобразования.

  • Детекция токовой перегрузки void mc_set_Over_Current(U8 Level); Устанавливает порог определения токовой перегрузки. В качестве порога выступает выход ЦАП, связанный с внешним компаратором.

Контур стабилизации выбирается с помощью двух функций: разомкнутый (mc_set_Open_Loop()) или замкнутый контур (mc_set_Close_Loop()). На рисунке 13 показан программно-реализованный контур стабилизации.


Рисунок 13. Контур стабилизации

Замкнутый контур представляет собой контур стабилизации скорости на основе ПИД-регулятора.

Как было показано ранее, коэффициент Кп используется для стабилизации времени отклика двигателя. Вначале установите Ки и Кд равными 0. Для получения требуемого времени отклика двигателя необходимо подбирать значение Кп.

  • Если время отклика слишком мало, то увеличьте Кп.
  • Если время отклика быстрое, но не стабильное, то снизьте Кп.


Рисунок 14. Настройка Кп

Параметр Ки используется для подавления статической погрешности. Оставьте коэффициент Кп неизменным и установите параметр Ки.

  • Если погрешность отличается от нуля, то увеличьте Ки.
  • Если подавлению погрешности предшествовал колебательный процесс, то уменьшите Ки.


Рисунок 15. Настройка Ки

На рисунках 14 и 15 показаны примеры выбора правильных параметров регулятора Кп = 1, Ки = 0.5 и Kд = 0.

Настройка параметра Кд:

  • Если быстродействие низкое, то увеличьте Кд.
  • При нестабильности Кд необходимо снижать.

Еще одним существенным параметром является время преобразования. Его необходимо выбирать относительно времени реагирования системы. Время преобразования должно быть, по крайней мере, в два раза меньше времени отклика системы (по правилу Котельникова).

Для конфигурации времени преобразования предусмотрены две функции (обсуждались выше).

Их результат отображается в глобальной переменной g_tick, которая устанавливается каждые 250 мкс. С помощью данной переменной возможно настроить время преобразования.

ЦПУ и использование памяти

Все измерения выполняются при частоте генератора 8МГц. Они также зависят от типа двигателя (количество пар полюсов). При использовании двигателя с 5 парами полюсов частота сигнала на выходе датчика Холла в 5 раз ниже частоты вращения двигателя.

Все результаты, приведенные на рисунке 16, получены при использовании трехфазного БКЭПТ с пятью парами полюсов и максимальной частотой вращения 14000 об/мин.


Рисунок 16. Использование быстродействия микроконтроллера

В худшем случае уровень загрузки микроконтроллера около 18% с временем преобразования 80 мс и частотой вращения 14000 об/мин.

Первую оценку можно выполнить для более быстрого двигателя и с добавлением функции стабилизации тока. Время выполнения функции mc_regulation_loop() находится между 45 и 55мкс (необходимо принять во внимание время преобразования АЦП около 7 мкс). Для оценки был выбран БКЭПТ с временем отклика тока около 2-3 мс, пятью парами полюсов и максимальной частотой вращения около 2-3 мс.

Максимальная частота вращения двигателя равна около 50000 об/мин. Если ротор использует 5 пар полюсов, то результирующая частота на выходе датчиков Холла будет равна (50000 об/мин/60)*5 = 4167 Гц. Функция mc_estimation_speed() запускается при каждом нарастающем фронте датчика Холла А, т.е. каждые 240 мкс при длительности выполнения 31 мкс.

Функция mc_switch_commutation() зависит от работы датчиков Холла. Она выполняется при возникновении фронтов на выходе одного из трех датчиков Холла (нарастающий или падающий фронты), таким образом, за один период импульсов на выходе датчика Холла генерируется шесть прерываний, а результирующая периодичность вызова функции равна 240/6 мкс = 40 мкс.

Наконец, время преобразования контура стабилизации должно быть, по крайней мере, в два раза меньше чем время реагирования двигателя (около 1 мс).

Результаты приведены на рисунке 17.


Рисунок 17. Оценка загрузки микроконтроллера

В таком случае уровень загрузки микроконтроллера около 61%.

Все измерения выполнялись с использованием одного и того же программного обеспечения. Коммуникационные ресурсы не используются (УАПП, LIN...).

При таких условиях используется следующий объем памяти:

  • 3175 байт памяти программ (38,7% от всего объема флэш-памяти).
  • 285 байт памяти данных (55,7% от всего объема статического ОЗУ).

Конфигурация и использование ATAVRMC100

На рисунке 18 представлена полная схема различных режимов работы стартового набора ATAVRMC100.


Рисунок 18. Назначение портов ввода-вывода микроконтроллера и коммуникационные режимы

Режим работы

Поддерживается два различных режима работы. Установите перемычки JP1, JP2 и JP3 в соответствии с рисунком 19 для выбора одного из этих режимов. В данных рекомендациях по применению используется только режим с использованием датчиков. Полное описание аппаратной части приведено в руководстве пользователя к набору ATAVRMC100.


Рисунок 19. Выбор режима управления с использованием датчиков

На рисунке 19 показаны исходные установки перемычек, которые соответствуют использованию программного обеспечения, связанного с данными рекомендациями по применению.

Программа, которая поставляется вместе с платой ATAVRMC100, поддерживает два режима работы:

  • запуск двигателя на максимальной скорости без внешних компонентов.
  • регулировка скорости двигателя с помощью одного внешнего потенциометра.


Рисунок 20. Подключение потенциометра

Заключение

В данных рекомендациях по применению представлено аппаратное и программное решение устройства управления бесколлекторным электродвигателем постоянного тока с использованием датчиков. Помимо данного документа, доступен для скачивания полный исходный код.

В состав программной библиотеки входит функции запуска и управления скоростью любого БКЭПТ со встроенными датчиками.

Принципиальная схема содержит минимум внешних компонентов, необходимых для управления БКЭПТ со встроенными датчиками.

Возможности ЦПУ и памяти микроконтроллера AT90PWM3 позволят разработчику расширить функциональные данного решения.


Рисунок 21. Принципиальная электрическая схема (часть 1)


Рисунок 22. Принципиальная электрическая схема (часть 2)


Рисунок 23. Принципиальная электрическая схема (часть 3)


Рисунок 24. Принципиальная электрическая схема (часть 4)

Документация:

Фантастический евроремонт квартир и ремонт коттеджей за большие деньги.

Немного из истории:

Главная проблема всех двигателей - это перегревание. Ротор вращался внутри какого-нибудь статора, и поэтому тепло от перегрева никуда не уходило. Людям пришла в голову гениальная идея: вращать не ротор, а статор, который при вращении охлаждался бы воздухом. Когда создали такой двигатель, он стал широко использоваться в авиации и судостроении, и поэтому его прозвали Вентильным двигателем.

Вскоре был создан электрический аналог вентильного двигателя. Назвали его бесколлекторным мотором, потому что у него не было коллекторов (щеток).

Бесколлекторный двигатель.

Бесколлекторные (brushless англ.) электродвигатели пришли к нам сравнительно недавно, в последние 10-15 лет . В отличие от коллекторных моторов они питаются трехфазным переменным током. Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД . Конструкция двигателя при этом относительно проще, в ней нет щеточного узла, который постоянно трется с ротором и создает искры. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Стоимость бесколлекторных двигателей несколько выше, чем коллекторных. Это вызвано тем, что все бесколлекторные моторы снабжены подшипникам и, как правило, изготовлены более качественно.



Испытания показали:
Тяга с винтом 8х6 = 754 грамма ,
Частота вращения = 11550 об/мин ,
Потребляемая мощность = 9 ватт (без винта), 101 ватт (с винтом),

Мощность и КПД

Мощность можно вычислить вот таким способом:
1) Мощность в механике вычисляется по такой формуле: N= F*v , где F - сила, а v - скорость. Но так как, винт находится в статическом состояние, то движения нет, кроме вращательного. Если этот мотор установить на авиамодель, то можно было бы замерить скорость (она равна 12 м/с) и посчитать полезную мощность:
N полез= 7.54*12= 90.48 ватт
2) КПД электрического двигателя находится по такой формуле: КПД= N полезной/N затраченной *100% , где N затрат= 101 ватт
КПД= 90.48/101 *100%= 90%
В среднем КПД бесколлекторных двигателей реально и колеблется около 90% (самый большой КПД достигнутый данным видом моторов равен 99.68% )

Характеристики двигателя:

Напряжение: 11.1 вольт
Обороты: 11550 об/мин
Максимальная сила тока: 15А
Мощность: 200 ватт
Тяга: 754 грамм (винт 8х6)

Заключение:

Цена любой вещи зависит от масштабов ее производства. Производители бесколлекторных моторов множатся, как грибы после дождя. Поэтому хочется верить, что в скором будущем цена на контроллеры и бесколлекторные двигатели упадет, как упала она на аппаратуру радиоуправления... Возможности микроэлектроники с каждым днем все расширяются, размеры и вес контроллеров постепенно уменьшаются. Можно предположить, что в скором будущем контроллеры начнут встраивать прямо в двигатели! Может, мы доживем до этого дня...

Бесколлекторный двигатель постоянного тока имеет на статоре трёхфазную обмотку, и постоянный магнит на роторе. Вращающееся магнитное поле создаётся обмоткой статора, при взаимодействии с которым магнитный ротор приходит в движение. Для создания вращающегося магнитного поля на обмотку статора подаётся система трёхфазных напряжений, которая может иметь различную форму и формируется различными способами. Формирование питающих напряжений (коммутация обмоток) для бесколлекторного двигателя постоянного тока производиться специализированными блоками электроники – контроллером двигателя.

Заказать бесколлекторный двигатель в нашем каталоге

В простейшем случае обмотки попарно подключаются к источнику постоянного напряжения и по мере того как ротор поворачивается в направлении вектора магнитного поля обмотки статора производится подключение напряжения к другой паре обмоток. Вектор магнитного поля статора при этом занимает другое положение и вращение ротора продолжается. Для определения нужного момента подключения следующих обмоток используется датчик положения ротора, чаще других используются датчики Холла.

Возможные варианты и специальные случаи

Выпускаемые сейчас бесколлекторные двигатели могут иметь самую разную конструкцию.

По исполнению статорной обмотки можно выделить двигатели с классической обмоткой, намотанной на стальной сердечник, и двигатели с полой цилиндрической обмоткой без стального сердечника. Классическая обмотка обладает значительно большей индуктивностью, чем полая цилиндрическая обмотка, и соответственно большей постоянной времени. Из-за этого с одной стороны, полая цилиндрическая обмотка допускает более динамичное изменение тока (а, следовательно, и момента), с другой стороны при работе от контроллера двигателя, использующего ШИМ-модуляцию невысокой частоты для сглаживания пульсаций тока, требуются фильтрующие дроссели большего номинала (а соответственно и большего размера). Кроме того, классическая обмотка, как правило, имеет заметно больший момент магнитной фиксации, а также меньший КПД, чем полая цилиндрическая обмотка.



Ещё одно отличие, по которому разделяются различные модели двигателей – это взаимное расположение ротора и статора – существуют двигатели с внутренним ротором и двигатели с внешним ротором. Двигатели с внутренним ротором, как правило, имеют более высокие скорости и меньший момент инерции ротора, чем модели с внешним ротором. Благодаря этому двигатели с внутренним ротором имеют более высокую динамику. Двигатели с внешним ротором часто имеют несколько больший номинальный момент при том же наружном диаметре двигателя.

Отличия от других типов двигателей

Отличия от коллекторных ДПТ. Размещение обмотки на роторе позволило отказаться от щёток и коллектора и избавиться тем самым от подвижного электрического контакта, который значительно снижает надёжность ДПТ с постоянными магнитами. По этой же причине скорость у бесколлекторных двигателей, как правило, значительно выше, чем у ДПТ с постоянными магнитами. С одной стороны это позволяет увеличить удельную мощность бесколлекторного двигателя, с другой стороны не для всех применений такая высокая скорость является действительно необходимой

Отличия от синхронных двигателей с постоянными магнитами. Синхронные двигатели с постоянными магнитами на роторе очень похожи на бесколлекторные ДПТ по конструкции, однако есть и ряд различий. Во-первых термин синхронный двигатель объединяет в себе много различных видов двигателей, часть из которых предназначены для непосредственной работы от стандартной сети переменного тока, другая часть (например синхронные серводвигатели) может работать только от преобразователей частоты (контроллеров двигателей). Бесколлекторные двигатели, хотя и имеют на статоре трёхфазную обмотку, не допускают непосредственную работу от сетевого напряжения, и обязательно требуют наличия соответствующего контроллера. Кроме того синхронные двигатели предполагают питание напряжением синусоидальной формы в то время как бесколлекторные двигатели допускают питание переменным напряжением ступенчатой формы (блочная коммутация) и даже предполагают его использование в номинальных режимах работы.

Когда нужен бесколлекторный двигатель?

Ответ на этот вопрос достаточно прост – в тех случаях, когда он имеет преимущество перед остальными типами двигателей. Так, например, практически невозможно обойтись без бесколлекторного двигателя в применениях, где требуются большие скорости вращения: свыше 10000 об/мин. Оправдано применение бесколлекторных двигателей также и в тех случаях, когда требуется высокий срок службы двигателя. В тех случаях, когда требуется применять сборку из двигателя с редуктором, однозначно оправдано применение низкоскоростных бесколлекторных двигателей (с большим числом полюсов). Высокоскоростные бесколлекторные двигатели в этом случае будут иметь скорость выше, чем предельно допустимая скорость редуктора, и по этой причине не будет возможности использовать их мощность полностью. Для применений, где требуется максимально простое управление двигателем (без использования контроллера двигателя) естественным выбором будет коллекторный ДПТ.

С другой стороны, в условиях повышенной температуры или повышенной радиации проявляется слабое место бесколлекторных двигателей – датчики Холла. Стандартные модели датчиков Холла имеют ограниченную стойкость к радиации и диапазон рабочих температур. Если в подобном применении всё же имеется необходимость использовать бесколлекторный двигатель, то неизбежными становятся заказные исполнения с заменой датчиков Холла на более стойкие к указанным факторам, что увеличивает цену двигателя и сроки поставки.