Элементы проектирования электроприводов. Количественная оценка моментов и сил сопротивления

Современный электропривод, в первую очередь автоматизированный, является сложной электромеханической системой. Проектирование такой системы требует учета большого числа разнообразных факторов и критериев, к числу которых относятся условия функционирования электропривода и его элементов, надежность и экономичность его работы, безопасность для обслуживающего персонала и окружающей среды, совместимость электропривода с другими электротехническими установками.

РАСЧЕТ МОЩНОСТИ И ВЫБОР ДВИГАТЕЛЕЙ

Задача расчета мощности и выбора двигателя состоит в поиске такого серийно выпускаемого двигателя, который обеспечивает заданный технологический цикл рабочей машины, его конструкция соответствует условиям окружающей среды и компоновки с рабочей машиной и при этом его нагрев не превышает нормативный (допустимый) уровень.

Важность правильного выбора двигателя определяется тем, что недостаточная его мощность может привести к невыполнению заданного технологического цикла и снижению производительности рабочей машины. При этом из-за перегрузки может иметь место повышенный нагрев двигателя и преждевременный выход его из строя.

Недопустимым является также использование двигателей завышенной мощности, так как при этом повышается первоначальная стоимость ЭП, а его работа происходит при пониженных КПД и коэффициенте мощности.

Выбор электродвигателя производится в такой последовательности: расчет мощности и предварительный выбор двигателя; проверка выбранного двигателя по условиям пуска и перегрузки и проверка его по нагреву.

Если выбранный двигатель удовлетворяет всем условиям проверки, то на этом выбор двигателя заканчивается. Если же двигатель не удовлетворяет условиям проверки на каком-то этапе, то выбирается другой двигатель (как правило, большей мощности) и проверка повторяется.

При выборе двигателя в общем случае одновременно должна выбираться и механическая передача ЭП, что позволяет в ряде случаев оптимизировать структуру ЭП. В данной главе рассматривается более простая задача, когда механическая передача уже выбрана и известны ее передаточное число (или ее радиус приведения) и КПД.

Основой для расчета мощности и выбора электродвигателя являются нагрузочная диаграмма и диаграмма скорости (тахограмма) исполнительного органа рабочей машины. При этом также должны быть известны масса (момент инерции) исполнительного органа и элементов механической передачи.

Нагрузочная диаграмма исполнительного органа рабочей машины представляет собой график изменения приведенного к валу двигателя статического момента нагрузки во времени M c (t). Эта диаграмма рассчитывается на основании технологических данных и параметров механической передачи. Для примера приведем формулы, по которым можно рассчитать моменты сопротивления М с, создаваемые на валу двигателя при работе исполнительных органов некоторых машин и механизмов:

Для подъемной лебедки

где G - сила тяжести поднимаемого груза, Н; R - радиус барабана подъемной лебедки, м; i, г| - передаточное число и КПД механической передачи;

Для механизма передвижения подъемных кранов

где G - сила тяжести перемещаемой массы, Н; к х - коэффициент, учитывающий увеличение сопротивления движению из-за трения реборд ходовых колес о рельсы, k l = 1,8^-2,5; р - коэффициент трения в опорах ходовых колес, р = 0,015-5-0,15;/ - коэффициент трения качения ходовых колес по рельсам, м, / = = (5-И2) 10 -4 ; г - радиус шейки оси ходового колеса, м.

Для вентиляторов

где Q - производительность вентилятора, м 3 /с; Н - напор (давление) газа, Па; г| в - КПД вентилятора, г| в = 0,"4-Д),85; со в - скорость вентилятора, рад/с; к 3 - коэффициент запаса, к 3 = 1,1+1,5; i - передаточное число механической передачи.

Для насосов

где Q - производительность насоса, м 3 /с; Н с - статический напор, м; АН - потери напора в трубопроводе, м;# - ускорение свободного падения, м/с 2 , g = 9,81; р - плотность перекачиваемой жидкости, кг/м 3 ; к з - коэффициент запаса, к з = 1,1-5-1,3; г н - КПД насоса, г н = 0,45ч-0,75; со н - скорость насоса, рад/с; / - передаточное число механической передачи.

Расчет моментов нагрузки других рабочих машин и механизмов рассмотрен в .

Диаграмма скорости , или тахограмма, представляет собой зависимость скорости движения исполнительного органа от времени Р ио (0 П Р И его поступательном движении или со ио (/) при его вращательном движении. После выполнения операции приведения эти зависимости изображаются в виде графика скорости вала двигателя во времени со(/).

На рис. 10.1, а приведен пример нагрузочной диаграммы. Она показывает, что данный исполнительный орган создает при своем движении в течение времени момент нагрузки М v а в течение времени t 2 - момент нагрузки М г Из тахограммы видно (рис. 10.1, б), что движение И О состоит из участков разгона, движения с установившейся скоростью, торможения и паузы. Продолжительности этих участков соответственно равны / , / у, t T , / 0 , а полное время цикла составляет t u = t p + t y + t T + t Q = t { + t 2 .

Рис. 10.1.

а - нагрузочная диаграмма исполнительного органа; б - тахограмма движения исполнительного органа; е - график динамического момента; г - нагрузочная диаграмма двигателя

Порядок расчета мощности, предварительного выбора и проверки двигателя рассмотрим на примере диаграмм рис. 10.1, а, б.

Определение расчетной мощности двигателя. Ориентировочно расчетный момент двигателя

где М э - эквивалентный момент нагрузки, к з - коэффициент запаса, учитывающий динамические режимы электродвигателя, когда он работает с повышенными токами и моментами.

Если момент нагрузки М с изменяется во времени и нагрузочная диаграмма имеет несколько участков, как это показано на рис. 10.1, а, то М с определяется как среднеквадратичная величина

где М с r t p - соответственно момент и длительность /-го участка нагрузочной диаграммы; п - число участков цикла.

Для рассматриваемого графика движения расчетная скорость двигателя со расч = со уст. Если скорость исполнительного органа регулируется, то расчетная скорость определяется более сложным путем и зависит от ее способа регулирования .

Определим расчетную мощность двигателя

Выбор двигателя и проверка его по перегрузке и условиям пуска. По

каталогу выбираем двигатель ближайшей большей мощности и скорости. Выбираемый двигатель при этом должен по роду и величине напряжения соответствовать параметрам сетей переменного или постоянного тока или силовых преобразователей, к которым он подключается, по конструктивному исполнению - условиям его компоновки с исполнительным органом и способам крепления на рабочей машине, а по способу вентиляции и защиты от действия окружающей среды - условиям его работы.

Выбранный двигатель проверяется по перегрузочной способности. Для этого рассчитывается зависимость момента двигателя от времени M(t), называемая нагрузочной диаграммой двигателя. Она строится с помощью уравнения механического движения (2.12), записанного в виде

Динамический момент М определяется суммарным приведенным моментом инерции J и заданными ускорением на участке разгона и замедлением на участке торможения диаграммы скорости со(/)

(см. рис. 10.1, б). Если принять график со(/) на участках разбега и торможения линейным, то динамический момент на этих участках

Зная график динамического момента (см. рис. 10.1, в) при постоянных ускорении и замедлении и зависимость M(t), построенную на основании (10.8), сопоставим максимально допустимый момент двигателя М тах с максимальным моментом М ] (см. рис. 10.1, г). Для рассматриваемого случая должно выполняться соотношение

Если соотношение (10.10) выполняется, то двигатель обеспечит заданное ускорение на участке разгона (см. рис. 10.1), если нет - график движения на этом участке будет отличаться от заданного. Для обеспечения заданного графика скорости необходимо выбирать другой более мощный двигатель и вновь повторять проверку по перегрузке до нахождения подходящего двигателя.

Для двигателя постоянного тока обычного исполнения и синхронного двигателя для асинхронного

двигателя с фазным ротором этот момент может быть принят примерно равным критическому.

При выборе асинхронного двигателя с короткозамкнутым ротором двигатель должен быть проверен также по условиям пуска, для чего сопоставляется его пусковой момент М п с моментом нагрузки при пуске М с п

Для рассматриваемого примера М с = М у Если выбранный двигатель удовлетворяет рассмотренным условиям, то далее осуществляется его проверка по нагреву.

Задача 10.1*. Движение исполнительного органа характеризуется графиками рис. 10.1, а, б, при этом: Л/ с| = 40 Н м; М с2 = 15 Н м; = = 20 с; t 2 = 60 с; t p = 2 с; / т = 1 с; 1 у = 77 с; со уст = 140 рад/с; J = 0,8 кг-м 2 .

Определить расчетный момент и мощность двигателя и построить его нагрузочную диаграмму.

1. Расчетный момент двигателя определяем по (10.5) с учетом (10.6), а расчетную мощность - по (10.7)

2. Для построения нагрузочной диаграммы двигателя M(t) определяем вначале динамические моменты на участках разбега М дин р и торможения М шнт:

3. Моменты двигателя на участках разбега Л/, и торможения М 2 определяем по (10.8):

Моменты двигателя на участках установившегося движения - / р) и (t 2 - t T) равны моментам нагрузки М с1 и М с2 , поскольку динамический момент на них равен нулю.

Министерство образования и науки Российской Федерации НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Автомобильный транспорт»

РАСЧЁТ ЭЛЕКТРОПРИВОДА

Методические указания к выполнению дипломных, курсовых и лабораторных работ по курсу

«Основы расчёта, проектирования и эксплуатации технологического оборудования АТП» для студентов специальности

«Автомобили и автомобильное хозяйство» всех форм обучения

Нижний Новгород 2010

Составитель В. С. Козлов.

УДК 629.113.004

Расчёт электропривода: Метод. указания к выполнению лаб. работ / НГТУ; Сост.: B.C. Козлов. Н. Новгород, 2005. 11 с.

Рассмотрены рабочие характеристики асинхронных трёхфазных электродвигатей. Приведена методика выбора электродвигателей привода с учётом пусковых динамических перегрузок.

Редактор Э.Л. Абросимова

Подл. к печ. 03.02.05. Формат 60x84 1/16. Бумага газетная. Печать офсетная. Печ. л. 0,75. Уч.-изд. л. 0,7. Тираж 100 экз. Заказ 132.

Нижегородский государственный технический университет. Типография НГТУ. 603600, Н. Новгород, ул. Минина, 24.

© Нижегородский государственный технический университет, 2005

1. Цель работы.

Изучить характеристики и выбрать параметры электродвигателей гидропривода и привода грузоподъёмных механизмов с учётом инерциальных составляющих.

2. Краткие сведения о работе.

Выпускаемые промышленностью электродвигатели по роду тока подразделяются на следующие типы:

- двигатели постоянного тока, питаемые постоянным напряжением, или с регулируемым напряжением; эти двигатели допускают плавное регулирование угловой скорости в широких пределах, обеспечивая плавный пуск,торможение и реверс, поэтому их применяют в приводах электротранспорта, мощных подъёмниках и кранах;

- однофазные асинхронные двигатели небольшое мощности, применяемые в основном для привода бытовых механизмов;

- трёхфазные двигатели переменного тока (синхронные и асинхронные), угловая скорость которых не зависит от нагрузки и практически не регулируется; по сравнение с асинхронными двигателями синхронные имеют более высокий КПД и допускают большую перегрузку, но уход за ними более сложен и стоимость их выше.

Трёхфазные асинхронные двигатели - самые распространённые во всех отраслях промышленности. По сравнению с остальными для них характерны следующие преимущества: простота конструкции, наименьшая стоимость, простейший уход, непосредственное включение в сеть без преобразователей.

2.1. Характеристики асинхронных электродвигателей.

На рис. 1. представлены рабочие (механические) характеристики асинхронного двигателя. Они выражают зависимость угловой скорости вала двигателя от вращающего момента (рис. 1.а) или вращающего момента от скольжения (рис. 1.6).

ω НОМС

М МАХ

ω КР

М ПУСК

М НОМ

М НОМ М ПУСК М МАХ М 0 θ НОМ θ КР

Рис. 1 Характеристики двигателей.

На этих рисунках МПУСК - пусковой момент, МНОМ - номинальный момент, ωС - синхронная угловая скорость, ω - рабочая угловая скорость двигателя под нагрузкой,

θ - скольжение поля, определяемое по формуле:

С − = N С − N

С N С

В пусковом режиме при изменении момента от МПУСК до ММАХ угловая скорость возрастает до ωКР . Точка ММАХ , ωКР - критическая, работа при этом значении момента недопустима, так как двигатель быстро перегревается. При снижении нагрузки от ММАХ до МНОМ , т.е. при переходе к длительному установившемуся режиму, угловая скорость возрастёт до ωНОМ , точка МНОМ , ωНОМ соответствует номинальному режиму. При дальнейшем снижении нагрузки до нуля угловая скорость возрастает до ωС .

Пуск двигателя осуществляется при θ = 1 (рис.1.б), т. е. при ω = 0; при критическом скольжении θКР двигатель развивает максимальный момент ММАХ , работать на этом режиме нельзя. Участок между ММАХ и МПУСК почти прямолинейный, здесь момент пропорционален скольжению. При θНОМ двигатель развивает номинальный момент и может работать в этом режиме длительное время. При θ = 1 момент падает до нуля, а частота вращения без нагрузки возрастает до синхронной NC , зависящей лишь от частоты тока в сети и числа полюсов двигателя.

Так, при нормальной частоте тока в сети 50 Гц асинхронные электродвигатели, имея число полюсов от 2 до 12, будут иметь следующие синхронные частоты вращения;

NC = 3000 ÷ 1500 ÷ 1000 ÷ 750 ÷ 600 ÷ 500 об/мин.

Естественно, что в расчёте электропривода надо исходить из несколько меньшей расчётной частоты вращения под нагрузкой, соответствующей номинальному режиму работы.

2.2. Потребная мощность и выбор электродвигателя.

Электроприводы механизмов циклического действия, характерных для АТП, работают в повторно-кратковременном режиме, особенностью которого являются частые пуски и остановки двигателя. Потери энергии в переходных процессах при этом непосредственно зависят от приведённого к валу момента инерции механизма и момента инерции самого двигателя. Все эти особенности учитывает характеристика интенсивности использования двигателя, называемая относительной продолжительностью включения:

ПВ = t В − tО 100

где tB , tQ - время включения и время паузы двигателя, a tB + tО - суммарное время

Для отечественных серий электродвигателей время цикла установлено равным 10 мин., а в каталогах на крановые двигатели приведены номинальные мощности для всех стандартных продолжительностей ПВ, т. е. 15%, 25%, 40%, 60% и 100%.

Выбор электродвигателя грузоподъёмного механизма производят в следующей последовательности:

1. Определяют статическую мощность при подъёме груза в установившемся

1000

где Q - вес груза, Н,

V - скорость подъёма груза, м/с,

η – общий КПД механизма = 0,85 ÷ 0,97

2. Используя формулу (1) определяют фактическую продолжительность

включения (ПВФ ), подставляя в неё tВ - фактическое время включения двигателя за цикл.

3. В случае совпадения фактической продолжительности включения (ПВ Ф ), и стандартного (номинального) значения ПВ, по каталогу выбирают электродвигатель

так, чтобы его номинальная мощность NД была равна иди несколько больше статической мощности (2).

В том случае, когда значение ПВФ не совпадает со значением ПВ, двигатель выбирают по мощности NН вычисленной по формуле

ПВФ

N н = N

Мощность выбранного двигателя NД должна быть или несколько больше значения NН .

4. Двигатель проверяют на перегрузку при пуске. Для этого по его номинальной мощности NД и соответствующей частоте вращения вала nД определяют номинальный момент двигателями

М Д = 9555

N Д

где МД - в Н·м, NД - в кВт, nД - в об/мин.

По отношению пускового момента МП , рассчитанного ниже см. (5,6,7), к моменту МД находят коэффициент перегрузки:

К П = М П

М Д

Расчётное значение коэффициента перегрузки не должно превышать допускаемые для данного типа двигателя значения - 1,5 ÷ 2,7 (см. Приложение 1).

Пусковой момент на валу двигателя, развиваемый при разгоне механизма, можно представить как сумму двух моментов: момента МСТ сил статического сопротивления и момента сопротивления МИ сил инерции вращающихся масс

механизма:

М П = М СТ М И

Для грузоподъёмного механизма, состоящего из двигателя, редуктора, барабана и полиспаста с заданными параметрами ИМ - передаточное число между двигателем и барабаном, аП - кратность полиспаста, IД - момент инерции

вращающихся частей двигателя и соединительной муфты, RБ - радиус барабана, Q - вес груза, σ = 1,2 - поправочный коэффициент, учитывающий инерцию остальных вращающихся масс привода, можно записать

М СТ =

Q RБ

и а

где суммарный приведённый к валу двигателя момент инерции движущихся масс механизма и груза при разгоне

Q R2

I ПР.Д = 2 Б 2 I Д (7)

g И М aП

Ввиду незначительности инерциальных масс гидромеханизмов, электродвигатель гидропривода подбирается исходя из максимальной мощности и соответствия числа оборотов выбранного насоса - см. лаб. работу "Расчёт гидропривода".

3. Порядок выполнения работы.

Работа выполняется в индивидуальном порядке согласно назначенного варианта. Черновые расчёты с окончательными выводами предъявляются преподавателю в конце занятия.

4. Оформление работы и сдача отчёта.

Отчёт выполняется на стандартных листах формата А4. Последовательность оформления: цель работы, краткие теоретические сведения, исходные данные, расчётное задание, расчётная схема, решение задачи, выводы. Сдача работы ведётся с учётом контрольных вопросов.

Используя исходные данные Приложения 2 и беря недостающие из Приложения 1 выбрать электродвигатель грузоподъёмного механизма. Определить коэффициент перегрузки двигателя при пуске.

По результатам лабораторной работы "Расчёт гидропривода" подобрать электродвигатель к выбранному гидравлическому насосу.

6. Пример выбора двигателя механизма подъёма стрелы с электроприводом. Определение коэффициента перегрузки двигателя при пуске.

Исходные данные: грузоподъёмная сила крана Q = 73 500 Н (грузоподъёмность 7,5 т); скорость подъёма груза υ=0,3 м/с; кратность полиспаста аП = 4; общий КПД механизма и полиспаста η = 0,85; радиус барабана лебёдки механизма подъёма RБ = 0,2 м; режим работы двигателя соответствует номинальному ПВФ = ПВ = 25%

1. Определяем потребную мощность двигателя

73500 0,3 = 26 кВ

1000

По каталогу электродвигателей выбираем двигатель трёхфазного тока серии

МТМ 511-8: NП = 27 кВт; nД = 750 об/мин; JД = 1,075 кг · м2 .

Выбираем упругую соединительную муфту с моментом инерции JД = 1,55 кг·м2 .

2. Определяем передаточное число механизма. Угловая скорость барабана

6,0 рад/ сек

Угловая скорость вала, двигателя

N Д = 3,14 750 = 78,5 рад / сек

Д 30 30

Передаточное число механизма

и м = Д = 78,5 = 13,08 Б 6,0

3. Находим статический момент сопротивления, приведённый к валу двигателя

М С.Д = Q R Б = 73500 0,2 ≈ 331 Н м и М а П 13,08 4 0,85

4. Рассчитываем суммарные приведенный (к валу двигателя) момент инерции механизма и груза при разгоне

J " ПР.Д =

Q RБ 2

I Д I М =

73500 0,22

1,2 1,075 1,55 = ...

0,129 3,15≈ 3,279 кг м 2

5. Определяем избыточный момент, приведенный к валу двигателя при времени разгона t P = 3 с.

М ИЗБ. Д. = J " ПР.Д t Д = 3,279 78,5 ≈ 86 Н м

Р 3

6. Вычисляем движущий момент на валу двигателя

M Р.Д. = M С.Д. М ИЗБ. Д.= 331 86 = 417 Н м

7. Определяем коэффициент перегрузки двигателя при пуске. Момент на валу

двигателя, соответствующий его номинальной мощности

M Д. = 9555

N Д

344 Н м

n Д

М Р.Д.

K П. =

M Д

7 . Контрольные вопросы для сдачи отчёта.

1. Что такое скольжение поля в электродвигателе?

2. Критическая и номинальная точки рабочих характеристик электродвигателей.

3. Что такое синхронная частота вращения электродвигателя, чем она отличается от номинальной?

4. Что называется относительной и фактической продолжительностью включения двигателя? Что показывает их отношения?

5. В чём разница между номинальным и пусковым моментами электродвигателя?

6. Коэффициент перегрузки при пуске электродвигателя.

ЛИТЕРАТУРА

1. Гоберман Л. А. Основы теории, расчёта и проектирования СДМ. -М.: Маш., 1988. 2. Проектирование механических передач: Учебное пособие. / С.А. Чернавский и др. - М.: Маш., 1976.

3. Руденко Н. Ф. и др. Курсовое проектирование грузоподъёмных машин. - М.: Маш., 1971.

Приложение 1. Асинхронные электродвигатели типа АО2

Тип электро

мощность

вращения

МП /МД

двигателя

кг·см2

кг·см2

Приложение 2.

Грузоподъёмность, т

Кратность полиспаста

Радиус барабана, м

Фактическое время

включения, мин

Скорость подъёма

груза, м/с

Время разгона. с

Грузоподъёмность, т

Кратность полиспаста

Радиус барабана, м

Фактическое время

включения, мин

Скорость подъёма

груза, м/с

Время разгона. с

Грузоподъемные механизмы (ГПМ) предназначены для погрузки оборудования, сырьевых ресурсов с пирса в люки трюмов и наоборот. Они подразделяются на грузовые, траловые, шлюпочные и другие лебёдки, а также крановые механизмы. Судовые краны являются автономными механизмами и в отличие от лебедок не требуют дополнительного такелажа.

Грузовые краны имеют три механизма: механизм подъема груза, механизм изменения вылета стрелы и механизм поворота. Кормовые краны имеют два механизма: механизм подъема и механизм передвижения. Грузовые краны более эффективны и маневренны, поэтому большинство сухогрузов и рефрижераторов снабжены кранами.

По механической части краны и лебедки могут иметь червячный или цилиндрический редуктор. Червячные редукторы имеют меньший КПД, чем цилиндрические.

Рассмотрим пример расчёта, проверки выбора электропривода грузоподъёмного механизма:

масса груза - =2500 кг ;

скорость подъёма – =50 ;

скорость опускания – =25 ;

высота подъёма – =25 ;

диаметр барабана – =0,42 ;

передаточное число редуктора – =36;

к.п.д. механизма – =0,85;

время паузы между – =110с;

напряжение сети – ;

длина кабеля – =60 .

Предварительный выбор двигателя.

Момент на валу электродвигателя при подъёме номинального груза

Момент на валу электродвигателя при опускании номинального груза в режиме тормозного спуска

Скорость электродвигателя (на быстроходной обмотке), необходимая для обеспечения заданной скорости подъёма номинального груза

или частота вращения

Скорость электродвигателя, необходимая для обеспечения опускания груза

или частота вращения

Мощность электродвигателя при подъёме номинального груза на быстроходной обмотке

Мощность электродвигателя при опускании груза на обмотке средней скорости

В качестве электродвигателя выбираем судовой трёхскоростной асинхронный электродвигатель для якорно-швартовных механизмов серии МАП 622-4/8/16 ОМ1 с параметрами для работы на двух скоростях.

Число полюсов
Мощность
Частота вращения
Угловая скорость 151,24 72,2
Номинальный ток
Пусковой ток
Максимальный момент
Пусковой момент
Коэффициент мощности 0,86 0,68
Момент инерции без тормоза 1,375
с тормозом 1,625
Напряжение

Определяем номинальный момент двигателя на быстроходной обмотке

Определяем номинальный момент двигателя на тихоходной обмотке:



Таким образом, работая с и двигатель не перегружается.

Механическая характеристика электродвигателя строится по следующим точкам:

а) для быстроходной обмотки:

· точка идеального холостого хода для быстроходной обмотки ,

где - частота сети, - число пар полюсов;

· точка номинального режима ;

· точка пуска - кратность пускового момента.

характерные точки режима для быстроходной обмотки:

точка холостого хода

точка номинального режима

точка критического момента

точка пускового момента

промежуточная точка1

промежуточная точка2

б) для тихоходной обмотки:

· точка идеального холостого хода для тихоходной обмотки:

· точка номинального режима ;

· точка, соответствующая критическому моменту ,

где - кратность максимального момента, , причём критическое скольжение определяется по выражению:

· точка пуска ,

где - кратность пускового момента.

Дополнительные точки определяются по формуле Клосса:

промежуточные точки при скольжении, равном и

характерные точки режима для тихоходной обмотки:

точка холостого хода

точка номинального режима

точка критического момента

точка пускового момента

промежуточная точка1

промежуточная точка2

На рисунке приведены механические характеристики АД Рис.7.1.

Построение нагрузочной диаграммы.

1) При подъёме номинального груза приведённый к валу двигателя момент инерции электропривода определяется:

где - опускаем из-за её малости.

Тогда для двигателя без тормоза

2) Время разгона двигателя на подъёме груза

3) Расчётный тормозной момент

4) Время торможения при подъёме груза и отключения двигателя



где , - коэффициент запаса тормоза .

5) Время пуска двигателя на спуск груза

6) Время торможения при спуске груза

7) Пути, пройденные при разгоне и торможении двигателя во время подъёма:

8) Пути, пройденные при разгоне и торможении двигателя во время спуска:

9) Установившаяся скорость подъёма груза с учётом выбранного двигателя и время подъёма:

10) Установившаяся скорость опускания груза с учётом выбранного двигателя и время спуска:

11) На основе расчёта строим нагрузочную, скоростную и токовую диаграммы (рис.7.2).

Рис.7.2а. Нагрузочная диаграмма.

t,c

Рис 7.2б. Скоростная диаграмма.

t,c

Рис.7.2в. Токовая диаграмма.

Время цикла

Мощность электродвигателя соответствует пуску, торможению и установившемуся режиму. Однако на этих этапах необходимо убедиться в отсутствии перегрева электродвигателя путём оценки его эквивалентного (среднеквадратичного) тока в цикле.

Эквивалентный (по нагреву) ток нагрузки электродвигателя определяется с помощью:

где - интервала цикла.

Можно полагать, что на каждом этапе цикла ток электродвигателя постоянный.

Во время разгона двигатель работает в режиме пуска , следовательно

Во время подъёма груза с установившейся скоростью на быстроходной обмотке электродвигатель работает в режиме близком к номинальному

При опускании груза электродвигатель работает в тормозном режиме. Во время разгона двигатель работает в режиме пуска , на тихоходной обмотке

Во время спуска груза с установившейся скоростью на тихоходной обмотке электродвигатель работает в режиме близком к номинальному

Тогда эквивалентный ток двигателя

Фактическая продолжительность включения двигателя

или ПВ=34%.

Допустимое значение эквивалентного тока двигателя определяется соотношением

Следовательно, эквивалентный ток рабочего режима (50,2А) меньше допустимого (70,3А) при фактической продолжительности включения ПВ=34%, что доказывает возможность использования (по температурным условиям) выбранного двигателя.

Выбор кабеля от распределительного щита

до электродвигателя

При выборе питающего кабеля исходят из расчёта величины эквивалентного тока, вида прокладки, температуры окружающей среды и т.д.

Величина расчётного тока кабеля определяется по формуле

где - эквивалентный ток, определённый в п.7; - коэффициент, учитывающий уменьшение допустимой нагрузки кабеля находящегося в пучке; для однорядных пучков - , - коэффициент, учитывающий число часов работы в сутки, к 2 =1,41, определяемый как

В трёхфазной системе для вычисления потери напряжения определяют как

где - коэффициент мощности выбранного двигателя.

Ниже приведены величины активных и реактивных сопротивлений одной жилы кабеля при температуре 65 о С и частоте сети 50 Гц, для 1000 метров кабеля.

Таблица 3

Обычно потеря напряжения выражается в процентах от номинального напряжения

Допустимые потери для сетей освещения – 5%, сетевых потребителей – 7%, норма не превышена.

Выбор коммутационной аппаратуры

Автоматический выключатель (автомат) предназначен для автоматического размыкания электрических цепей при аварийной ситуации, а также для нечастых оперативных включений и отключений электрических цепей при нормальных режимах работы.

Автоматы снабжены расцепителями, контролирующими величину соответствующего параметра (в данном случае - тока).

Для включения и отключения электропривода выбираем автоматический выключатель А3114Р с комбинированным максимальным расцепителем на номинальный ток 100А.

Управление режимами электропривода

Регулирование скорости в электроприводах на переменном токе осуществляется за счёт использования многоскоростных асинхронных

электродвигателей и контроллеров управления (см. рис.7.3).

Статор асинхронного двигателя имеет две группы обмотки С2, и С3 комбинации которых обеспечивают изменение механической характеристики электродвигателя с синхронными скоростями вращения. Обмотки подключаются через общий автоматический выключатель АВ и контакты силового кулачкового контроллера 1-ХП согласно таблице 4.

В этой же цепи включены реле тепловой защиты от перегрузки РТ1, РТ2 и РГ. При превышении тока величины установки реле оно срабатывает и разрывает цепь контакторов грузовой защиты КГ1 и КГ2.

Цепи управления питаются через трансформатор Тр и выпрямитель Вп. В аварийных ситуациях, не допускающих остановки электродвигателя, несмотря на его перегрузку, тепловая защита шунтируется кнопкой К. При отключении автомата АВ, ротор двигателя заторможен дисковым тормозом Т, который растормаживается электромагнитом ТМ при включении АВ.

Работа электропривода в направлении выбирать (подъём груза) и травить (опускание груза) определяется только направлением вращения магнитного поля. Реверс осуществляется контактами IV и VI. При положении рукоятки в секторе «выбирать» замкнуты контакты II, III, V, (см. таблицу), а в положении «травить» - II, IV, VI.

При пуске двигателя катушка ТМ растормаживает дисковый тормоз. В первом положении рукоятки силового кулачкового контроллера получает питание обмотка С3, т.к. контакты грузового контактора КГ1 шунтируют фазы обмотки С2. Двигатель разгоняется по характеристике I до частоты первой ступени. Рукоятка переводится во второе положение, размыкаются контакты КГ1 и замыкаются контакты КГ2 и I,шунтируя обмотку С3 и включая звёздочкой обмотку С2. Двигатель переходит на характеристику 2 и разгоняется до частоты второй ступени. Но если нагрузка на двигатель возрастает выше допустимой, тогда срабатывает грузовое реле РГ и размыкает цепь катушек КГ1 и КГ2. Схема обеспечит переключение двигателя на характеристику 1, т.к. обмотка С2 будет отключена, а С3 включена.

Таблица 4

Контакты Травить Выбирать
Х Х
Х Х Х Х
Х Х
Х Х
Х Х
Х Х

Рис.7.3. Принципиальная схема грузоподъемного механизма.

0

Электроэнергетический факультет

Кафедра автоматизированного электропривода и электромеханики

КУРСОВОЙ ПРОЕКТ

по дисциплине «Теория электропривода»

Расчет электропривода грузового лифта

Пояснительная записка

Введение…………………………………………………………...………………

1 Расчет электропривода грузового лифта………………………………………

1.1 Кинематическая схема рабочей машины, ее описание и технические данные………………………………………………………………………………...…

1.2 Расчет статических моментов…………………………………………...……

1.3 Расчет нагрузочной диаграммы………………………………………………

1.4 Предварительный расчет мощности электродвигателя и его выбор………

1.5 Расчет приведенных статических моментов……………………………...…

1.6 Построение нагрузочной диаграммы электродвигателя……………………

1.7 Предварительная проверка электропривода по нагреву и производительности…………………………………………………………………….

1.8 Выбор системы электропривода и его структурная схема…………………

1.9 Расчет и построение естественных механической и электромеханической характеристик выбранного двигателя…………………………………………………

1.9.1 Расчет и построение естественных характеристик двигателя постоянного тока независимого возбуждения…………………………………..……

1.10 Расчет и построение искусственных характеристик………………………

1.10.1 Расчет и построение пусковой диаграммы двигателя с линейной механической характеристики графическим способом……………………….……..

1.10.2 Построение тормозных характеристик……………………………...……

1.11 Расчет переходных режимов электропривода……………………………..

1.11.1 Расчет механических переходных процессов электропривода при абсолютно жестких механических связях………………………………………

1.11.2 Расчет механического переходного процесса электропривода при наличии упругой механической связи……………………………………………...…

1.11.3 Расчет электромеханического переходного процесса электропривода при абсолютно жестких механических связях……………………………………..…

1.12 Расчет и построение уточненной нагрузочной диаграммы двигателя

1.13 Проверка электропривода на заданную производительность, по нагреву и перегрузочной способности электродвигателя…………………………………..…

1.14 Принципиальная схема электрической части электропривода

Заключение ………………………………………………………………..………

Список литературы……………………………………………………………..…

Введение

Способ получения энергии, необходимой для выполнения механической работы в производственных процессах, на всех этапах истории человеческого общества оказывал на развитие производительных сил решающее влияние. Создание новых, более совершенных двигателей, переход к новым видам приводов рабочих машин явились крупными историческими вехами на пути развития машинного производства. Замена двигателей, реализующих энергию падающей вод, паровой машины, послужила мощным толчком к развитию производства в прошлом веке – веке пара. Наш 20 в. Получил название века электричества в первую очередь потому, что основным источником механической энергии стал более совершенный электрический двигатель и основным видом привода рабочих машин является электрический привод.

Индивидуальный автоматизированный электропривод в настоящее время получил широкое применение во всех сферах жизни и деятельности общества – от сферы промышленного производства до сферы быта. Благодаря рассмотренным выше особенностям совершенствование технических показателей электроприводов во всех областях применения является основой технического прогресса.

Широта применения определяет исключительно большой диапазон мощностей электроприводов (от долей ватта до десятков тысяч киловатт) и значительное разнообразие из исполнения. Уникальные по производительности промышленные установки – прокатные станы в металлургической промышленности, шахтные подъемные машины и экскаваторы в горнодобывающей промышленности, мощные строительные и монтажные краны, протяженные высокоскоростные конвейерные установки, мощные металлорежущие станки и многие другие – оборудуются электрическими приводами, мощность которых составляет сотни и тысячи киловатт. Преобразовательные устройства таких электроприводов представляет собой генераторы постоянного тока, тиристорные и транзисторные преобразователи с выходом на постоянном токе, тиристорные преобразователи частоты соответствующей мощности. Они обеспечивают широкие возможности регулирования потока электрической энергии, поступающей в двигатель, в целях управления движением электропривода и технологическим процессом приводимого в движение механизма. Их управляющие устройства, как правило, построены на основе использования микроэлектроники и во многих случаях включают в себя управляющие вычислительные машины.

1 Расчет электропривода грузового лифта

1.1 Кинематическая схема рабочей машины, ее описание и технические данные

1 – электродвигатель,

2 – тормозной шкив,

3 –редуктор,

4 – канатоведущий шкив,

5 – противовес,

6 – грузовая клеть,

7 – нижняя площадка,

8 – верхняя площадка.

Рисунок 1 – Кинематическая схема лифта

Грузовой лифт осуществляет подъем груза, помещенного в грузовую клеть, с нижней площадки на верхнюю. Вниз клеть опускается пустая.

В цикл работы грузового лифта входит время загрузки, время подъема клети со скоростью V р, время разгрузки и время спуска клети со скоростью V в> V р

Таблица 1 – Исходные данные

Обозначение

Наименование показателя

Размерность

Масса клети

Грузоподъемность

Масса противовеса

Диаметр канатоведущего шкива

Диаметр цапфы

Коэфф., трения скольжения в подшипниках

Линейная жесткость механизма

Высота подъема клети

Скорость движения с грузом

Скорость движения без груза

Допустимое ускорение

Число циклов в час

Суммарное время работы, не более

По заданию необходимо при расчете механизма брать двигатель постоянного тока с независимым возбуждением.

1.2 Расчет статических моментов

Момент статического сопротивления грузового лифта складывается из момента силы тяжести и момента сил трения в подшипниках канатоведущего шкива и трения грузовой клети и противовеса в направляющих шахты.

Момент силы тяжести определяется по формуле:

где D – диаметр канатоведущего шкива, м;

m рез – результирующая масса, которая поднимается или спускается электроприводом лифта, кг.

Результирующая масса определяется соотношение масс груза, клети и противовеса и может быть рассчитана по формуле:

m рез = m k + m г - m n =1500+750-1800=450 кг

Момент силы трения в подшипниках канатоведущего шкива можно определить по выражению:

Момент силы трения грузовой клети и противовеса в направляющих шахты математически точно определить практически невозможно, так как величина этого сопротивления зависит от многих факторов, не поддающихся учету. Поэтому величина момента сил трения клети и противовеса в направляющих учитывается величиной кпд механизма, которая определена заданием на проектирование.

Таким образом, полный момент статического сопротивления грузового лифта определяется по выражению:

если двигатель работает в двигательном режиме, и по выражению:

если двигатель работает тормозном (генераторном) режиме.

1.3 Расчет нагрузочной диаграммы рабочей машины

Для того, чтобы ориентировочно оценить требуемую для данного механизма мощность двигателя, необходимо определить тем или иным способом мощность или момент производственного механизма на разных участках его работы и скорости движения рабочего органа механизма на этих участках. Другими словами, необходимо построить нагрузочную диаграмму производственного механизма.

Механизм, работающий в повторно-кратковременном режиме, в каждом цикле совершает прямой ход с полной нагрузкой и обратный ход на холостом ходу или с малой нагрузкой. На рисунке 2.1 приведена нагрузочная диаграмма механизма с ограничением допустимого ускорения рабочего органа механизма.

Рисунок 2 – Нагрузочная диаграмма механизма с ограничением ускорения

На нагрузочной диаграмме изображены:

- , – статические моменты при прямом и обратном ходах;

- , – динамические моменты при прямом и обратном ходах;

- , – пусковые моменты при прямом и обратном ходах;

- , – тормозные моменты при прямом и обратном ходах;

- , – скорости прямого и обратного ходов;

- , – времена пуска, торможения и установившегося движения при прямом ходе;

- , – времена пуска, торможения и установившегося движения при обратном ходе.

По заданным скоростям V c 1 , V c 2 , длине перемещения L, и допустимому ускорению а, рассчитываются t п1 , t п2 , t т1 , t т2 , t у1 , t у2 .

Время пуска и торможения:

Путь, проходимый рабочим органом машины за время пуска (торможения):

Путь, проходимый рабочим органом машины за время установившегося движения:

Время установившегося движения:

Время работы механизма при прямом и обратном ходах:

Динамические моменты рабочей машины

где D – диаметр вращающегося элемента рабочей машины, преобразующего вращательное движение в поступательное, м,

J рм1 , J рм1 – моменты инерции рабочей машины при прямом и обратном ходах.

Полный момент рабочего органа механизма, в динамическом режиме (пуск, торможение) при прямом и обратном ходах, определяются по выражениям:

1.4 Предварительный расчет мощности электродвигателя и его выбор

Таким образом, в результате расчетов по вышеприведенным формулам координаты нагрузочных диаграммы получают конкретные значения, позволяющие рассчитать среднеквадратическое значение момента за цикл работы.

Для нагрузочной диаграммы, с ограничением ускорения:

Фактическая относительна продолжительность включения определяется из выражений:

где t ц – длительность цикла работы, с,

Z – число включений в час.

Имея значение среднеквадратичного момента производственного механизма за цикл, ориентировочную требуемую мощность двигателя можно определить по соотношению:

где V сн – скорость рабочего органа механизма V c 2 ,

ПВН – номинальное значение продолжительности включения, ближайшее к фактическому ПВ Н,

К – коэффициент, учитывающий величину и длительность динамических нагрузок электропривода, а также потери в механических придачах и в электродвигателе. Для нашего случая К = 1.2.

Теперь выбирается двигатель, подходящий по условиям эксплуатации.

Параметры двигателя:

Краново-металлургический двигатель постоянного тока,U Н =220 В, ПВ=25%.

Таблица 2 – Данные двигателя

Определяем передаточное число редуктора:

где w Н – номинальная скорость выбранного двигателя.

Редуктор можно выбирать по справочнику, учитывая определенное передаточное число, номинальную мощность и скорость двигателя, а так же режим работы механизма, для которого этот редуктор предназначен.

Такой выбор редуктора является весьма примитивным и годным разве что для механизмов типа лебедки. Реально редуктор проектируется для конкретного рабочего механизма и является его неотъемлемой частью, ограниченно связанной и с электродвигателем и с рабочим органом. Поэтому, если выбор редуктора не ограничен особо в задании на проектирование.

1.5 Расчет приведенных статических моментов, моментов инерции и коэффициента жесткости системы электрический двигатель – рабочая машина

Для того чтобы можно было рассчитать статические и динамические характеристики электропривода, необходимо все статические и динамические нагрузки привести к валу двигателя. При этом должны учитываться не только передаточное число редуктора, но и потери в редукторе, а так же постоянные потери в двигателе.

Потери холостого хода двигателя (постоянные потери) можно определить, приняв их равными переменным потерям в номинальном режиме работы:

где η н – номинальный кпд двигателя.

Если величина η н в каталоге не дается, ее можно определить по выражению:

Момент постоянных потерь двигателя

Таким образом, приведенные к валу двигателя статические моменты системы электродвигатель – рабочая машина на каждом участке работы рассчитываются по формулам:

если двигатель в установившемся режиме работает в двигательном режиме.

Суммарный приведенный к валу электродвигателя момент инерции системы электродвигатель – рабочая машина состоит как бы из двух составляющих:

а) момент инерции ротора (якоря) двигателя и связанных с ним элементов электропривода, вращающихся с той же скоростью, что и двигатель,

б) приведенный к валу двигателя суммарный момент инерции движущихся исполнительных органов рабочей машины и связанных с ними движущихся масс, задействованных в технологическом процессе данного рабочего механизма.

Таким образом, суммарный приведенный к валу двигателя момент инерции, при прямом и обратных ходах определяется по выражениям:

где J д – момент инерции якоря (ротора) двигателя,

а – коэффициент учитывающий наличие на быстроходном валу других элементов электропривода, таких как муфт, тормозного шкива и т.п.

Для механизма, представленного в задании на курсовое проектирование, коэффициент а = 1,5.

J пррм1 , J пррм2 – приведенный к валу двигателя суммарный момент инерции движущихся исполнительных органов, и, связанных с ними масс рабочей машины при прямом и обратном ходах:

Для того, чтобы получить представление о влиянии упругих механических связей на переходные процессы системы электродвигатель – рабочая машина в задании представлена крутильная жесткость C k .

Приведенную к валу двигателя жесткость упругой механической связи С пр определяют через значение крутильной жесткости:

1.6 Построение нагрузочной диаграммы электродвигателя

Для построения нагрузочной диаграммы электродвигателя необходимо определить требуемые для пуска и торможения значения динамических моментов, а так же значения пусковых и тормозных моментов двигателя.

Для нашей нагрузочной диаграммы механизма с ограничением ускорения значения этих моментов определяется по следующим выражениям.

Пусковые и тормозные моменты для случая, когда двигатель в установившемся режиме работает в двигательном режиме, определяется по формуле:

Для построения рабочей характеристики потребуется значение скорости w c 1 . Скорость w c2 равна номинальной скорости электродвигателя.

Рисунок 3 – Приближенная нагрузочная диаграмма электродвигателя

1.7 Предварительная проверка электродвигателя по нагреву и производительности

Предварительная проверка двигателя по нагреву может быть проведена по нагрузочной диаграмме двигателя методом эквивалентного момента. В данном случае этот метод не дает значительной погрешности, т.к. и двигатель постоянного тока, и двигатель переменного тока будут работать в проектируемом электроприводе на линейной части механических характеристик, что дает основание с большой долей вероятности считать момент двигателя пропорциональным току двигателя.

Эквивалентный момент определяется по выражению:

Допустимый момент предварительно выбранного двигателя, работающего при ПВ ф:

Условие правильности предварительного выбора двигателя:

Для нашего случая

что удовлетворяет условиям выбора электродвигателя.

1.8 Выбор системы электропривода и его структурная схема

Проектируемый электропривод совместно с заданным производственным механизмом образует единую электромеханическую систему. Электрическая часть этой системы состоит из элктромеханического преобразователя энергии постоянного или переменного тока и системы управления (энергетической и информационной). Механическая часть электромеханической системы включает в себя все связанные движущиеся массы привода и механизма.

В качестве основного представления механической части принимаем расчетную механическую систему (рисунок 4), частым случаем которой при пренебрежении упругостью механических связей является жесткое приведенное механическое звено.

Рисунок 4 – Двухмассовая расчетная механическая система

Здесь J 1 и J 2 – приведенные к валу двигателя моменты инерции двух масс электропривода, связанных упругой связью,

w1, w2 – скорости вращения этих масс,

с12 – жесткость упругой механической связи.

В результате анализа электромеханических свойств различных двигателей установлено, что при определенных условиях механические характеристики этих двигателей описываются идентичными уравнениями. Поэтому при этих условия аналогичны и основные электромеханические свойства двигателей, что позволяет описывать динамику электромеханических систем одними и тем же уравнениями.

Вышесказанное справедливо для двигателей с независимым возбуждением, двигателей с последовательным возбуждением и смешанным возбуждением при линеаризации их механических характеристик в окрестности точки статического равновесия и для асинхронного двигателя с фазным ротором при линеаризации рабочего участка его механической характеристики.

Таким образом, применив одни и те же обозначения для трех типов двигателей, получим систему дифференциальных уравнений, описывающих динамику линеаризованной электромеханической системы:

где М с(1) и М с(2) – части общей нагрузки электропривода, приложенные к первой и второй массам,

М 12 – момент упругого взаимодействия между движущимися массами системы,

β – модуль статической жесткости механической характеристики,

Т э – электромагнитная постоянная времени электромеханического преобразователя.

Структурная схема, соответствующая системе уравнений представлена на рисунке 5.

Рисунок 5 - Структурная схема электромеханической системы

Параметры w0, Тэ, β определяются для каждого типа двигателя по собственным выражениям.

Система дифференциальных уравнению и структурная схема правильно отражает основные закономерности, свойственные реальным нелинейным электромеханическим системам в режимах допустимых отклонений от статического состояния.

1.9 Расчет и построение естественных механической и электромеханической характеристик выбранного электродвигателя

Уравнение естественных электромеханической и механической характеристик данного двигателя имеют вид:

где U – напряжение на якоре двигателя,

I – ток якоря двигателя,

M – момент, развиваемый двигателем,

R яΣ – суммарное сопротивление якорной цепи двигателя:

где R я – сопротивление обмотки якоря,

R дп – сопротивление обмотки дополнительных полюсов,

R ко – сопротивление компенсационной обмотки,

Ф – магнитный поток двигателя.

К – конструктивный коэффициент.

Из выражений, приведенных выше видно, что характеристики двигателя линейна при условии Ф = const и могут быть построены по двум точкам. Такими точками выбираются точка идеального холостого хода и точка номинального режима. Остальные величины определяются:

Рисунок 6 - Естественная характеристика двигателя

1.10 Расчет и построение искусственных характеристик электродвигателя

К искусственным характеристикам двигателя в данном курсовом проекте относятся реостатная характеристика для получения пониженной скорости при работе двигателя с полной нагрузкой, а так же реостатные характеристики обеспечивающие заданные условия пуска и торможения.

1.10.1 Расчет и построение пусковой диаграммы двигателя с линейной механической характеристики графическим способом

Построение начинается с построения естественной механической характеристики. Далее требуется рассчитать максимальный момент развиваемый двигателем.

где λ – перегрузочная способность двигателя.

Для построения рабочей характеристики используем значения w 1 и М с1 , точку идеального холостого хода.

При выходе на естественную характеристику имеется бросок тока, который выходит за рамки М 1 и М 2 . Для запуска с рабочей характеристики необходимо оставить текущую схему пуска. Так как при пуске на рабочую и естественную характеристику ступень требуется одна и нет надобности в дополнительных ступенях.

М 1 и М 2 принимаем равными:

Рисунок 7 - Пусковая характеристика двигателя

Согласно рисунку пусковые сопротивления рассчитываются по следующим формулам:

Последовательность пуска отображена на рисунке в виде знаков.

1.10.2 Расчет и построение рабочей характеристики двигателя с линейной механической характеристики.

Рабочая характеристика двигателя постоянного тока с независимым возбуждением строится по двум точкам: точка идеального холостого хода и точка рабочего режима, координаты которых определены ранее:

Рисунок 8 - Рабочая характеристика двигателя

В зависимости от того как располагаются рабочая характеристика относительно пусковой диаграммы двигателя, необходима та или иная коррекция либо пусковой диаграммы, либо траектории пуска двигателя под нагрузкой Мс1 до скорости wc1.

Рисунок 9 - Рабочая характеристика двигателя

1.10.3 Построение тормозных характеристик

Техническим заданием определено максимально допустимое, в переходных процессах, ускорение, то исходным для построения тормозных характеристик являются величины средних, постоянных по величине, тормозных моментов, определенных в пункте 6. Так как, при их определении ускорение считалось постоянным, тормозные моменты при торможении с различной нагрузкой и с разных начальных скоростей могут значительно отличаться друг от друга, причем в большую, либо меньшую сторону. Теоретически возможно даже их равенство:

Поэтому должны быть построены обе тормозные характеристики.

Рисунок должен учитывать, что реостатные характеристики торможения Противовключением должны быть построены таким образом, чтобы площадь между характеристиками и осями координат примерно равнялись в одном случае:

а в другом случае:

Зачастую величины тормозных моментов бывают намного меньше пикового момента М 1 , при котором определяются пусковые сопротивления. В этом случае необходимо построить естественную характеристику двигателя для обратного направления вращения и определить величины тормозных сопротивлений по выражениям согласно рисунку:

1.11 Расчет переходных режимов электропривода

В данном курсовом проекте должны быть рассчитаны переходные процессы пуска и торможении с различной нагрузкой. В результате должны быть получены зависимости момента, скорости и угла поворота от времени.

Результаты расчета переходных процессов будут использованы при построении нагрузочных диаграмм электропривода и проверке двигателя по нагреву, перегрузочной способности и заданной производительности.

1.11.1 Расчет механических переходных процессов электропривода при абсолютно жестких механических связях

При представлении механической части электропривода жестким механическим звеном и пренебрежении электромагнитной инерцией, электропривод с линейной механической характеристикой, представляет собой апериодическое звено, с постоянной времени Т м.

Уравнения переходного процесса для этого случая записываются так:

где М с – момент двигателя в установившемся режиме,

w c - скорость двигателя в установившемся режиме,

М нач – момент в начале переходного процесса,

W нач – скорость двигателя в начале переходного процесса.

Т м – электромеханическая постоянна времени.

Электромеханическая постоянная времени считается по следующей формуле, для каждой ступени:

Для тормозных характеристик:

Время работы на характеристике, при переходных процессах определяется по следующей формуле:

Для выхода на естественную характеристику считаем:

Для выхода на рабочую характеристику:

Для тормозных характеристик:

Время переходных процессов при пуске и торможении определяется, как сумм времен на каждой ступени.

Для выхода на естественную характеристику:

Для выхода на рабочую характеристику:

Время работы на естественной характеристике теоретически равно бесконечности, соответственно его считали как (3-4) Тm.

Таким образом, были получены все данные для расчета переходных процессов.

1.11.2 Расчет механического переходного процесса электропривода при наличии упругой механической связи

Для расчета данного переходного процесса необходимо знать ускорение и частоту свободных колебаний системы.

Решение уравнения имеет вид:

В абсолютно жесткой системе нагрузка передач в процессе пуска равна:

За счет упругих колебаний нагрузка возрастает и определяется по выражению:

Рисунок 13 - Упругие колебания нагрузки

1.11.3 Расчет электромеханического переходного процесса электропривода при абсолютно жестких механических связях

Для расчета данного переходного процесса необходимо, что бы были рассчитаны следующие величины:

Если отношение постоянных времени меньше четырех то используем следующие формулы для вычисления:

Рисунок 14 - Переходной процесс W(t)

Рисунок 15 - Переходной процесс М(t)

1.12 Расчет и построение уточненной нагрузочной диаграммы электродвигателя

Уточненная нагрузочная диаграмма двигателя должна быть построена с учетом пусковых и тормозных режимов работы двигателя в цикле.

Одновременно с расчетом нагрузочной диаграммы двигателя необходимо рассчитать величину среднеквадратичного момента на каждом участке переходного процесса.

Среднеквадратичный момент характеризует нагрев двигателя в том случае, когда двигатели работают на линейной части своих характеристик, где момент пропорционален току.

Для определения среднеквадратичных значений момента или тока реальная кривая переходного процесса аппроксимируется прямолинейными участками.

Значения среднеквадратичных моментов на каждом участке аппроксимации определим по выражению:

где М нач i – начальное значение момента на рассматриваемом участке,

М кон i – конечное значение момента на рассматриваемом участке.

Для нашей нагрузочной диаграммы необходимо определить шесть среднеквадратичных момента.

Для движения на естественной характеристике:

Для движения на рабочей характеристике:

1.13 Проверка электропривода на заданную производительность, по нагреву и перегрузочной способности

Проверка на заданную производительность механизма заключается в том, чтобы проверить, укладывается ли рассчитанное время работы в заданное техническим заданием t p .

где t рр – расчетное время работы электропривода,

t п1 и t п2 – времена первого и второго пусков,

t т1 и t т2 – времена первого и второго торможений,

t у1 и t у2 – времена установившихся режимов при работе с большей и малой нагрузкой,

t п2 , t п1 , t т2 , t т12 – берутся из расчета переходных процессов,

Проверку выбранного двигателя по нагреву в данном курсовом проекте следует выполнить методом эквивалентного момента.

Допустимый момент двигателя в повторно – кратковременном режиме определяют по выражению:

1.14 Принципиальная электрическая схема силовой части электропривода

Силовая часть представлена в графической части.

Описание силовой схемы электродвигателя

Управление электроприводом заключается, в – первых, в подключении обмоток двигателя к питающей сети при пуске и отключение при остановке и во – вторых, постепенного переключения релейно–контакторной аппаратурой ступеней пускового резистора по мере разгона двигателя.

Выведение ступеней пускового резистора в цепи ротора, возможно несколькими способами: в функции скорости, в функции тока и в функции времени. В данном проекте пуск двигателя осуществляется в функции времени.

Заключение

В данном курсовом был рассчитан электропривод тележки мостового крана. Выбранный двигатель не совсем удовлетворяет условиям, так как момент развиваемы двигателем больше, чем требуется для данного механизма, следовательно, необходимо выбрать двигатель с меньшим моментом. Так как перечень предлагаемых двигателей не полный, то мы оставляем данный двигатель с поправкой.

Так же для использования рабочей характеристики для пуска в обоих направлениях, мы допустили несколько больший скачек тока, при переходе на естественную характеристику. Но это допустимо, так как изменение схемы пуска привело бы к необходимости введения дополнительного сопротивления.

Список литературы

1.Ключев, В.И. Теория электропривода / В.И. Ключев. – М.: Энергоатомиздат, 1998.- 704с.

2.Чиликин, М.Г. Общий курс электропривода / М.Г. Чиликин. – М.: Энергоатомиздат, 1981. -576 с.

3.Вешеневский, С.Н. Характеристики двигателей в электроприводе / С.Н. Вешеневский. – М.: Энергия, 1977. – 432 с.

4.Андреев, В.П. Основы электропривода / В.П. Андреев, Ю.А. Сабинин. – Госэнергоиздат, 1963. – 772 с.

Скачать курсовую: У вас нет доступа к скачиванию файлов с нашего сервера.

Задание

1. Составить кинематическую схему электропривода и дать описание назначения и принципа его работы. Описать механизм замыкания (фиксации) главного исполнительного элемента

Произвести кинематический расчет электропривода

Определить коэффициент полезного действия электропривода

Произвести прочностной расчет одного из элементов кинематической схемы

Составить схему управления автошлагбаума ПАШ-I

Определить дальность установки электропривода

Используемая литература

Исходные данные

1. Назначение и принцип работы переездного шлагбаума с двигателем переменного тока ПАШ-1

электропривод замыкание кинематический автошлагбаум

Переездной шлагбаум с двигателем переменного тока ПАШ-1 является составной частью комплекса устройств для ограждения железных дорог в местах их пересечения в одном уровне с автомобильными, пешеходными, а в некоторых случаях и городскими транспортными коммуникациями и предназначен для предупреждения въезда транспортных средств на железнодорожный путь.

Область применения ПАШ-1 - в системе устройств ограждения железнодорожных переездов на станциях, перегонах, подъездных путях железных дорог общего пользования и промышленного железнодорожного транспорта.

ПАШ-1 может выпускаться в трех вариантах исполнения по роду питания электродвигателей: вариант А - переменное трехфазное; вариант Б - переменное однофазное; вариант В-постоянным током.

При отсутствии питания ПАШ-1 работает только на опускание заградительного бруса (ЗБ). ПАШ-1 может работать от однофазной и трехфазной сети переменного тока.

Силовой механизм представляет собой электродвигатель и двухступенчатый редуктор. Первая ступень редуктора - червячный однозаходный самотормозящий механизм. Вторая ступень - цилиндрическая прямозубная передача со встроенной электромагнитной муфтой в зубчатом колесе.

Червячный редуктор предназначен для создания необходимой частоты вращения главного вала и запирания заградительного бруса в крайних положениях.

Кинематическая схема автошлагбаума типа ПАШ-1 показана на рисунке 1.

Принцип работы:

При вступлении поезда на участок приближения к переезду включается звонок и светофорная мигающая сигнализация.

По истечении времени, необходимого для освобождения переезда от транспорта, схемой управления отключается питание электромагнитной муфты, главный вал оттормаживается, и под действием несбалансированности ЗБ главный вал поворачивается, а ЗБ опускается в горизонтальное положение.

В аварийном режиме предусмотрена возможность опускания ЗБ вручную, при помощи курбельной рукоятки.

При отклонении ЗБ от вертикального положения на угол 10-15 о для гашения кинетической энергии ЗБ производится включение гидрогасителя.

Амортизационное устройство обеспечивает плавную остановку ЗБ без качков в конце перевода.

Для гашения кинетической энергии и демпфирования крайних положений ЗБ в шлагбауме предусмотрен гидрогаситель, механическая характеристика которого позволяет автоматически поддерживать равномерную скорость опускания заградительного бруса.

После проследования поезда за пределы переезда в четном или нечетном направлении, на электромагнитную муфту и электродвигатель подается электропитание, вращаясь электродвигатель поднимает ЗБ в вертикальное положение.

Вращение главного вала и отключение электропитания электродвигателя произойдет, когда ЗБ примет вертикальное положение, при этом электромагнитная муфта находится под током (напряжением) и удерживает ЗБ в этом положении.

В момент возвращения ЗБ в вертикальное положение при отключении электродвигателя, отключаются световые и звуковые сигналы.

2. Кинематический расчет электропривода

Выберем электродвигатель АИР 56В4Б переменного тока на напряжение 220В, мощностью 0,18 кВт, 1350 оборотов в минуту.

Определим количество оборотов главного вала за одну операцию:

оборотов

Определим частоту вращения главного вала:

об./сек.об/мин.

Определим передаточное число редуктора:


Автошлагбаум ПАШ-1 имеет двухступенчатый редуктор. Передаточное число червячного редуктора - 90.

Определим передаточное число цилиндрической прямозубной передачи:


Уточненное значение редуктора:

Определим фактическое время поднятия бруса:

с

3. Определение коэффициента полезного действия электропривода номинальной мощности и номинального тока электродвигателя

а) Определим мощность на главном валу:

Вт

б) Найдем дополнительные потери мощности электропривода. Эти потери составляют 2% от полезной мощности на главном валу:

DР доп =0,55 Вт

С учетом этих потерь Р 4 составит:

Р 4 =0,55+27,5=28 Вт

в) Определим потери мощности в редукторе:

Так как , где

КПД цилиндрическо-зубчатой передачи;

КПД червячной передачи;

n - количество пар редукторов.

Вт

Определим потери мощности в редукторе:

DР ред =Р 3 - Р 4 = 37,3 - 28 =9,3 Вт

г) Определим потери мощности в подшипниках (качения):

DР п = Р 2 - Р 3 = 41,9 - 37,3=4,6 Вт

Полезная мощность на валу электродвигателя:

Вт,

где h п - КПД подшипниковых опор

h п = h 6 пк =0,98 6 =0,89

h пк = 0,98 - КПД опор подшипников качения.

д) Определим мощность, потребляемую электродвигателем из сети:


Определим потери мощности в электродвигателе:

DР д = Р 1 - Р 2 = 63,5 - 41,9=21,6 Вт

Энергетическая диаграмма потребляемой мощности из сети Р 1 с учетом различных потерь представлена на рисунке 2.


е) Определим КПД электропривода и номинальный ток электродвигателя:


Мощность, потребляемая трехфазным электродвигателем переменного тока, работающим от однофазной сети:


Откуда номинальный ток электродвигателя:

А

4. Прочностной расчет элемента кинематической схемы

Определение размеров шпонки крепления бруса на элементе 9.

Для крепления бруса на элементе 9 применяется призматическая шпонка. Необходимо определить размеры шпонки при диаметре вала () 40 мм.

Призматические шпонки выполняют прямоугольного сечения с отношением высоты к ширине сечения 1:1. Призматические шпонки изготавливают из чистотянутой стали.

Ширину шпонки (b) выбирают равной .

Определим ширину шпонки:

мм

Зная ширину шпонки можно определить высоту шпонки по стандартным размерам сечений призматических шпонок.

Мм, следовательно, размер сечений шпонки 20х12 мм.

Определим напряжение среза шпонки на элементе 9.

кПа

При максимальном усилии поднятия бруса:

кПа

Так как, согласно допустимое напряжение на срез 40 МПа, то напряжение среза шпонки на элементе 9 при номинальном и максимальном моменте удовлетворяет норме.

5. Схема управления шлагбаумом ПАШ- I

Схема выполнена для открытого состояния переезда. Брус шлагбаума поднят, светофоры переездной сигнализации выключены.

Электромагнитная муфта каждого шлагбаума находится под током и обеспечивает сцепление бруса с редуктором. Электродвигатель шлагбаума М трехфазный, фаза С2-С5 изолирована, а фаза С3-С6 с последовательно включенными конденсаторами подключена параллельно фазе С1-С4. Блок-контакты БК обеспечивают отключение двигателя после подъема бруса шлагбаума.

В1, В2 - контакты автопереключателя, контролирующие соответственно опущенное и поднятое положение бруса шлагбаума.

Реле схемы имеют следующее назначение:

ВМ - обеспечивает выдержку времени на опускание бруса шлагбаума после включения красных мигающих огней на переездном светофоре (13 с);

ВЭМ - реле выключения электромагнитной муфты;

ОША, ОШБ - реле открытия (включения подъема бруса) шлагбаума;

ВЭД - реле выдержки времени 15-20 с для выключения двигателя при работе на фрикцию;

У1, У2, У3 - реле контроля поднятого состояния брусьев шлагбаумов;

ЗУ - реле контроля опущенного (закрытого положения) брусьев шлагбаумов;

ВДА, ВДБ - реле, контролирующие промежуточное положение брусьев шлагбаумов;

АО1, АО2, БО1, БО2 - огневые реле, контролирующие целостность нитей ламп переездных светофоров;

УБ1, УБ2 - реле повторители кнопки поддержания бруса шлагбаума;

ПВ1, ПВ2 - реле, включающие переездную сигнализацию.

С целью повышения надежности горения огней светофорной сигнализации лампы огней переездных светофоров получают питание от двух различных источников питания. Нормально, при отсутствии поездов, брус шлагбаума находится в поднятом состоянии. Реле ОША, ОШБ, ВЭД, ВДА, ВДБ и ЗУ находятся в обесточенном состоянии. Под током находятся реле У1, У2, У3, ВМ и ВЭМ, электромагнитная муфта.

При вступлении поезда на участок приближения, в соответствии с известными схемами типовых решений, обесточиваются реле ПВ1 и ПВ2 (извещение о приближении) и размыкают цепь питания реле У1 и У2, а последние цепь питания реле ВМ. Включаются реле М1 и М2, срабатывает реле КМК и огни переездных светофоров начинают сигнализировать в сторону автотранспорта красными мигающими огнями. Через некоторое время, необходимое для проследования ранее двигавшегося под шлагбаумом автотранспорта, отпускает якорь реле ВМ и выключает реле ВЭМ, а последнее размыкает цепь питания электромагнитной муфты. Брус шлагбаума начинает опускаться под действием собственного веса. После того как брус шлагбаума займет горизонтальное положение замкнуться контакты В1 автопереключателя и встает под ток реле ЗУ, сигнализирующее о закрытом положении шлагбаума. При вступлении поезда на участок приближения через тыловые контакты У1, У1, ПВ1, ПВ2 получит питание и притянет якорь реле ВЭД, параллельно которому подключен конденсатор большой емкости. Реле ВЭД подготовит цепь включения реле открытия шлагбаумов ОША и ОШБ.

После того как поезд проследует переезд и притянут якорь реле ПВ1 и ПВ2 замкнется цепь питания реле ВЭМ, ОША и ОШБ. Реле ВЭМ включит электромагнитную муфту, а реле ОША и ОШБ замкнут цепь питания электродвигателей привода брусьев автошлагбаумов и последние начнут подниматься в вертикальное положение. После того как оба бруса займут вертикальное положение (80 о -90 о), замкнутся контакты автопереключателей В2 и создадут цепь питания реле У1, У2 и их повторителей, а последние разомкнут питание реле ОША и ОШБ и схема перейдет в исходное состояние.

Если по какой-либо причине, например, при заклинивании один из брусьев шлагбаумов, например шлагбаума Б, остановится в среднем положении, то после того как брус шлагбаума А достигнет вертикального положения, притянет якорь реле ВДА и разомкнет цепь питания реле ОША, которое в свою очередь разомкнет цепь питания двигателя. Реле ОШБ будет оставаться под током и двигатель привода шлагбаума Б будет работать на фрикцию до тех пор пока не закончится разряд конденсатора К3, подключенного параллельно катушке реле ВЭД и последнее не отпустит свой якорь.

В случае выключения питания переменного тока брусья шлагбаумов останутся в поднятом положении до приближения к переезду первого поезда, после чего брусья опустятся автоматически, а подъем брусьев после проследования поезда будет осуществляться вручную. Выключение красных мигающих огней переездных светофоров осуществляется только после полного подъема брусьев обоих шлагбаумов контактами реле У1 и У2.

Схема управления шлагбаумом ПАШ-I показана на рисунке 3.


6. Определение дальности установки электропривода

Определить длину кабеля без дублирования жил:

м

где L - длина кабеля, без дублирования жил;

U n - напряжение источника питания;

U д - напряжения на зажимах двигателя;

r 1 - сопротивление медной жилы кабеля диаметром 1 мм.

Согласно , дублирование жил для управления двигателем до расстояния 100 м не требуется.

Рассчитаем емкость пускового конденсатора:

U ф - номинальное фазное напряжение;

f = 50 Гц - частота;

Коэффициент мощности.

Учитывая, что работа двигателя происходит под нагрузкой, необходимо увеличить рабочую емкость. Электродвигатель шлагбаума работает 10-12 с при мощности, превосходящей расчетную на 35%. Поэтому рабочую емкость следует увеличить на 50-70%. Тогда:

мкФ

Используемая литература

1. Задание на контрольную работу с методическими указаниями для студентов VI курса. Москва 2005 год.

Переездной шлагбаум ПАШ-I. Технология обслуживания, ремонта и проверки в условиях дистанций сигнализации и связи железных дорог. Москва 1998 год.

Методические указания по проектированию устройств автоматики, телемеханики и связи на ж.д. транспорте И-234-95 «Переездной шлагбаум с двигателем переменного тока». Санкт-Петербург 1995 год.